Align Threonine dehydratase 2 biosynthetic, chloroplastic; SlTD2; Threonine deaminase 2; EC 4.3.1.17; EC 4.3.1.19 (characterized)
to candidate Pf6N2E2_3938 Threonine dehydratase biosynthetic (EC 4.3.1.19)
Query= SwissProt::P25306 (595 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_3938 Length = 504 Score = 423 bits (1087), Expect = e-122 Identities = 230/501 (45%), Positives = 319/501 (63%), Gaps = 4/501 (0%) Query: 94 LFQYLVDILASPVYDVAIESPLELAEKLSDRLGVNFYIKREDKQRVFSFKLRGAYNMMSN 153 L QY+ IL S VYDVA+E+PL+ A +LS+RLG + +KRED Q VFSFK+RGAYN ++ Sbjct: 2 LEQYVKKILTSRVYDVAVETPLQSARQLSERLGNSILLKREDLQPVFSFKIRGAYNKLTQ 61 Query: 154 LSREELDKGVITASAGNHAQGVALAGQRLNCVAKIVMPTTTPQIKIDAVRALGGDVVLYG 213 LS EE +GV+TASAGNHAQG+ALA + L A IVMP TTP+IK++ VR+ GG VVL+G Sbjct: 62 LSDEERARGVVTASAGNHAQGLALAAKVLGVKATIVMPKTTPEIKVEGVRSRGGKVVLHG 121 Query: 214 KTFDEAQTHALELSEKDGLKYIPPFDDPGVIKGQGTIGTEINRQLKD-IHAVFIPVGGGG 272 +F EA ++L+L ++ G YI P+DDP I GQGT+ EI RQ + A+F+PVGGGG Sbjct: 122 DSFPEALAYSLKLVDEKGYVYIHPYDDPHTIAGQGTVAMEILRQHPGRLDAIFVPVGGGG 181 Query: 273 LIAGVATFFKQIAPNTKIIGVEPYGAASMTLSLHEGHRVKLSNVDTFADGVAVALVGEYT 332 LIAG+A + K + P+ KIIGVEP + + ++ G RV L V FADGVAVA +G++T Sbjct: 182 LIAGIAAYVKYLRPDIKIIGVEPDDSNCLQAAMAAGERVVLPTVGLFADGVAVAQIGQHT 241 Query: 333 FAKCQELIDGMVLVANDGISAAIKDVYDEGRNILETSGAVAIAGAAAYCEFYKIKNENIV 392 F C+ +D ++ V+ D I AAIKD+YD+ R+I E +GA+ +AG Y E I + +V Sbjct: 242 FDICKHYVDEVITVSTDEICAAIKDIYDDTRSITEPAGALGVAGIKKYVESRGISGQTLV 301 Query: 393 AIASGANMDFSKLHKVTELAGLGSGKEALLATFMVEQQGSFKTFVGLVGSLNFTELTYRF 452 AI SGAN++F +L V E A LG G+EA++A + EQ GSFK F VG TE YR+ Sbjct: 302 AIDSGANVNFDRLRHVAERAELGEGREAIIAVTIPEQPGSFKAFCEAVGKRQITEFNYRY 361 Query: 453 TSERKNALILYRVNVDKESD-LEKMIEDMKSSNMTTLNLSHNELVVDHLKHLVGG-SANI 510 + A I V E+D +I + L+L+ NEL H++H+VGG +A++ Sbjct: 362 NT-GSEAHIFVGVQTHPENDPRSALIASLTEQGFPVLDLTDNELAKLHIRHMVGGHAAHV 420 Query: 511 SDEIFGEFIVPEKAETLKTFLDAFSPRWNITLCRYRNQGDINASLLMGFQVPQAEMDEFK 570 DE+ F PE+ L FL+ RWNI++ YRN G + ++ G QVP E Sbjct: 421 IDEVVLRFEFPERPGALFNFLNKLGGRWNISMFHYRNHGAADGRVVAGLQVPHDERHLVP 480 Query: 571 NQADKLGYPYELDNYNEAFNL 591 +++GYPY ++ N A+ L Sbjct: 481 AALEEIGYPYWDESDNPAYQL 501 Lambda K H 0.317 0.135 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 717 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 595 Length of database: 504 Length adjustment: 36 Effective length of query: 559 Effective length of database: 468 Effective search space: 261612 Effective search space used: 261612 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory