Align NAD+-dependent L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate Pf6N2E2_1102 Aldehyde dehydrogenase A (EC 1.2.1.22)
Query= metacyc::MONOMER-16246 (477 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1102 Length = 477 Score = 788 bits (2036), Expect = 0.0 Identities = 385/476 (80%), Positives = 436/476 (91%), Gaps = 1/476 (0%) Query: 3 SSVPVHRNYIDGAFVESAAHLEVFNPANGALLSRVPAASAEEVERALAAARAAQKDWARK 62 SSVPV +N+I+G F S AHL+V+NPA GALLSR PA++A +V++ALAAARAAQK W+ K Sbjct: 2 SSVPVFQNFINGQFTHSEAHLDVYNPATGALLSRGPASTAADVDQALAAARAAQKAWSAK 61 Query: 63 PAIERAGHLRRIAAKIRADAGRIARTITLEQGKIASLAEVEVNFTADYLDYMAEWARRLE 122 PAIERAG+LRRIA K+R + +ARTITLEQGK ++LA VEVNFTADYLDYMAEWARR+E Sbjct: 62 PAIERAGYLRRIAGKLRENVAHLARTITLEQGKTSALAAVEVNFTADYLDYMAEWARRIE 121 Query: 123 GEIIASDRPGENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVVKPSEETPN 182 GEII SDRPGENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIV+KPSEETPN Sbjct: 122 GEIITSDRPGENIFLFRKPLGVVAGILPWNFPFFLIARKMAPALLTGNTIVIKPSEETPN 181 Query: 183 NCFEFARLVAETDLPRGVFNVVCGAGQVGGALSSHPGVDLISFTGSVETGARIMAAAAPN 242 NCFEFARLVAETDLP GVFNVVCG GQVG ALS H GVD+ISFTGSV+TG+RIM A+APN Sbjct: 182 NCFEFARLVAETDLPPGVFNVVCGDGQVGAALSGHKGVDMISFTGSVDTGSRIMTASAPN 241 Query: 243 LTKLNLELGGKAPAIVLADADLELAVKAIRDSRIINSGQVCNCAERVYVQRQVAEPFIER 302 +TKLNLELGGKAPAIVLADADL LAVKAIRDSRIIN+GQVCNCAERVYV+R+VA+ FIER Sbjct: 242 ITKLNLELGGKAPAIVLADADLALAVKAIRDSRIINTGQVCNCAERVYVERKVADQFIER 301 Query: 303 IAAAMAATRYGDPLAEPEVEMGPLINRLGLEKIDAKVRTALAQGATLVTGGAIAERP-GH 361 I+AAM+ATRYGDPLAEP++EMGPLINR GL+ ++ KVRTAL QGA+L++GG +A+RP G Sbjct: 302 ISAAMSATRYGDPLAEPDIEMGPLINRHGLDSVERKVRTALQQGASLISGGRVADRPDGF 361 Query: 362 HYQPTVLTGCRADTRIMREEIFGPVLPIQIVDDLDEAIALANDCEYGLTSSVFTRDLNKA 421 H+QPTVL GC A +IMREEIFGPVLPIQI+DDLDEAIALANDC+YGLTSS++TRDL +A Sbjct: 362 HFQPTVLAGCNASMQIMREEIFGPVLPIQIIDDLDEAIALANDCDYGLTSSIYTRDLGRA 421 Query: 422 MHALRELDFGETYINREHFEAMQGFHAGVRKSGIGGADGKHGLYEYTHTHVVYLQS 477 MHA+R LDFGETY+NRE+FEAMQGFHAGVRKSG+GGADGKHGLYEYTHTH VYLQS Sbjct: 422 MHAIRGLDFGETYVNRENFEAMQGFHAGVRKSGVGGADGKHGLYEYTHTHAVYLQS 477 Lambda K H 0.320 0.136 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 757 Number of extensions: 19 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 477 Length adjustment: 33 Effective length of query: 444 Effective length of database: 444 Effective search space: 197136 Effective search space used: 197136 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory