Align α,α-trehalase (MSMEG_4535;MSMEG4528) (EC 3.2.1.28) (characterized)
to candidate Pf6N2E2_6094 Glucoamylase (EC 3.2.1.3)
Query= CAZy::ABK72415.1 (668 letters) >lcl|FitnessBrowser__pseudo6_N2E2:Pf6N2E2_6094 Glucoamylase (EC 3.2.1.3) Length = 529 Score = 328 bits (841), Expect = 4e-94 Identities = 197/493 (39%), Positives = 268/493 (54%), Gaps = 12/493 (2%) Query: 154 ILLRTVRCVSGTVELVMSCEPAFDYHRVSATWEYSGPAYGEAIARASRNPDSHPTLRLTT 213 +L+R V G+ M C DY R + T A P+LRL + Sbjct: 30 VLMRKVHMTVGSATFRMRCAVRHDYARAATTARQDA-------AHICFEAPGQPSLRLCS 82 Query: 214 NLRIGIEGREARARTRLTEGDNVFVALSWSKHPAPQTYEEAADKMWKTSEAWRQWINVGD 273 + + ++G A A L +G + L P Q + +A + +T WR WI Sbjct: 83 DQPMTLDGNAAVAEFTLAQGQSAEFLLGGIDDPRLQD-DVSAICLERTLAFWRGWIGQST 141 Query: 274 FPDHPWRAYLQRSALTLKGLTYSPTGALLAAPTTSLPETPQGERNWDYRYSWIRDSTFAL 333 + WR + RSAL LK LT GA+LAA T LPET GERNWDYRY+WIRDS+F + Sbjct: 142 YRGR-WREVVNRSALALKLLTSRKHGAILAAATFGLPETRGGERNWDYRYTWIRDSSFTV 200 Query: 334 WGLYTLGLDREADDFFSFIADVSGANNGERHPLQVMYGVGGERSLVEEELHHLSGYDNSR 393 + LG EA+ + ++ + L ++YG+ G L E EL HLSG+ N+R Sbjct: 201 YAFMRLGFVEEANAYMRWLRGRVSDCCDQPTKLNILYGLDGRLELPETELPHLSGFGNAR 260 Query: 394 PVRIGNGAYNQRQHDIWGTMLDSVYLHAKSREQIPDALWPVLKNQVEEAIKHWKEPDRGI 453 PVRIGN AY Q Q DI+G ++D+VYL K E I W + V++ K W++ D GI Sbjct: 261 PVRIGNLAYKQVQLDIFGELMDAVYLVNKYGEAISHQGWKHTVDVVDQVCKVWQDKDVGI 320 Query: 454 WEVRGEPQHFTSSKIMCWVALDRGSKLAELQGEKSYAQQWRAIAEEIKADVLAR-GVDKR 512 WE+RG+ QHF S++MCWVA+DR +LAE + + +W + I D+ D+ Sbjct: 321 WEMRGDKQHFLHSRLMCWVAVDRAIRLAEKRSLPAPFARWDETRQAIYQDIWTNFWNDEH 380 Query: 513 GVLTQRYGDDALDASLLLAVLTRFLPADDPRIRATVLAIADELTEDGLVLRYRVEETD-D 571 QR G ALD S+LL L RF+ A DPR +T+ AI L DG+V RYR +++ D Sbjct: 381 QHFIQRLGSTALDGSMLLMPLVRFVSARDPRWLSTLDAIEKNLVRDGMVYRYRNDDSPID 440 Query: 572 GLAGEEGTFTICSFWLVSALVEIGEISRAKHLCERLLSFASPLHLYAEEIEPRTGRHLGN 631 GL G EG+F CSFW V L G + +A+ E+LL +A+PL LYAEE + G HLGN Sbjct: 441 GLRGIEGSFAACSFWYVECLARAGRVEKAQLEFEQLLRYANPLGLYAEEFDSH-GYHLGN 499 Query: 632 FPQAFTHLALINA 644 PQA HLALI+A Sbjct: 500 TPQALPHLALISA 512 Lambda K H 0.319 0.135 0.426 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 980 Number of extensions: 48 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 668 Length of database: 529 Length adjustment: 37 Effective length of query: 631 Effective length of database: 492 Effective search space: 310452 Effective search space used: 310452 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory