Align 2-amino-5-chloromuconic acid deaminase; 2-aminomuconate deaminase; EC 3.5.99.5 (characterized)
to candidate Pf6N2E2_3403 Aspartyl-tRNA(Asn) amidotransferase subunit A (EC 6.3.5.6) @ Glutamyl-tRNA(Gln) amidotransferase subunit A (EC 6.3.5.7)
Query= SwissProt::Q38M35 (462 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_3403 Length = 475 Score = 234 bits (597), Expect = 5e-66 Identities = 162/451 (35%), Positives = 220/451 (48%), Gaps = 20/451 (4%) Query: 4 AHLSLAEHAARLRRRELTAVALIDTCAQHHARMEPRLNAYKTWDGARARSAAAAVDTLLD 63 A S+ + L LT+ +L+ + R +LNAY RA AA A D Sbjct: 8 ASQSIGQLRQALESGTLTSESLVGAQLERIERFNGQLNAYVEAYPQRALGAAIAADRQRA 67 Query: 64 QGQDLGPLMGLPVSVKDLYGVPGLPVFAGSDEALPEAWQAAGPLVARLQRQLGIVVGKTH 123 G LGPL G+P+++KDL+ + G + GS P + V RL+R I++GKTH Sbjct: 68 AGVHLGPLHGIPIAIKDLFEIDGKAITGGSLAQTPRISRLTATAVQRLERAGAIIMGKTH 127 Query: 124 TVEFAFGGLGVNAHWGTPRNPWSPHEHRVPGGSSAGAGVSLVQGSALLALGTDTAGSVRV 183 TVEFAFGG G NA GTP NPW HR PGGSS+G+ V++ G A ALGTDT GSVR+ Sbjct: 128 TVEFAFGGWGTNAVMGTPWNPWDHEVHRAPGGSSSGSAVAVAGGLASAALGTDTGGSVRI 187 Query: 184 PASMTGQVGLKTTVGRWPVEGIVPLSSSLDTAGVLTRTVEDLAYAFAA------LDTESQ 237 PA M G VGLKTT G G++ L SLD+ G +T TVED A+ A LD S Sbjct: 188 PAGMCGLVGLKTTRGLVSRHGLIELCPSLDSVGPITHTVEDAAWMLDALLGPDPLDPVSA 247 Query: 238 GLP-----APAPVRVQGLRVGVPTNHFWDDIDPSIAAAVEAAVQRLAQAGAQVVRFPLP- 291 P A + V GLR+ V + I P + AA + +++LA G +V PLP Sbjct: 248 KSPVFSAAAGLNLPVAGLRIWVLPQTEREHIAPGVLAAYDQGLEQLAALGMHLVEQPLPT 307 Query: 292 HCEEAFDIFRRGGLAASELAAYLDQHFPHKVERLDPVVRDRVRWAEQVSSVEYLRRKAVL 351 E+ + GGL ++E A L F R DP V+ RV + + Y+ Sbjct: 308 SLEQCMRV--AGGLMSAEGYASLGSLFERDDLRFDPHVQRRVLSGRAIDAAAYIHLHNQR 365 Query: 352 QRCGAGAARLFDDVDVLLTPTVPASPPRLADIGTVETYAPANMKAMRNTAISNLFGWCAL 411 + VD PT L+ + T P + +NL C++ Sbjct: 366 RAARQAMDEAMSQVDACAFPTNAIGSVPLSQVDEYGT--PLALLG----RFANLLNLCSV 419 Query: 412 TMPVGLDANRMPVGLQLMGPPRAEARLIGIA 442 +PVG D RMPV +Q++G AE ++ IA Sbjct: 420 ALPVGFDEQRMPVSMQIVGRAFAEPLVLRIA 450 Lambda K H 0.320 0.135 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 541 Number of extensions: 23 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 462 Length of database: 475 Length adjustment: 33 Effective length of query: 429 Effective length of database: 442 Effective search space: 189618 Effective search space used: 189618 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory