Align isobutanoate/2-methylbutanoate--CoA ligase (EC 6.2.1.1) (characterized)
to candidate 206897 DVU1453 long-chain-fatty-acid--CoA ligase
Query= metacyc::MONOMER-20125 (556 letters) >MicrobesOnline__882:206897 Length = 564 Score = 177 bits (450), Expect = 7e-49 Identities = 153/542 (28%), Positives = 246/542 (45%), Gaps = 41/542 (7%) Query: 19 FLERAATVYGDCTSVVYDAVSYTWSQTHRRCLCLASSIASLGIENGHVVSVLAPNVPQMY 78 FL+ AA + T++++ ++++ A+++ + G+ G VSV+ PNVPQ Sbjct: 25 FLDEAAERHPKQTAIIFRNYKVSYAKLRLLAERFAANLRAQGVLPGDRVSVMLPNVPQAI 84 Query: 79 ELHFAVPMAGAILNAVNLRLDARTISILLHHSESKLIFVDHLSRDLILEAIALFPKQAPV 138 + + AG + N + + +H S ++ + ++ DL+ I + + Sbjct: 85 IAFWGLLKAGCTVVMTNPLYMEKELVHQIHDSGAEYM----IALDLVWPKIEPLRDRLGI 140 Query: 139 PRLVFMADESESGNSSELGKEFFC----SYKDLIDRGDPDFKW--VMPKSEW------DP 186 + G L F +++D+ G+ W + K E +P Sbjct: 141 RKFFITRISDALGFPLNLLYRFKAKREGTWRDVPFDGETVIPWKTLFKKKEGYSAKVENP 200 Query: 187 M----ILNYTSGTTSSPKGVV--HCHRGIFIMTVDSLIDWGVPKQPVYLWTLPMFHANGW 240 +L YT GTT KGV+ H + + + + +++ + +L +P FH G Sbjct: 201 REALALLQYTGGTTGISKGVMLTHYNLSVNVQQIKAILGESTRMRHTFLGLMPYFHVYGL 260 Query: 241 SYPWGM-AAVGGTNICLRKFDSEIIYDMIKRHGVTHMCGAPVVLNMLSNAP--GSEPLKT 297 + + A+G T I ++ + I +H T GAP + L G LK+ Sbjct: 261 TTCLTLPTALGATIIPFPRYVPRDVLVGIDKHKPTIFPGAPSIYISLMQQKDVGEFDLKS 320 Query: 298 TVQIMTAGAPPPSAVLFRTESL-GFAVSHGYGLTETAGLVVSCAWKKEWNHLPATERARL 356 ++ AP P + R L G V G+GLTE + + HL + Sbjct: 321 IKYCISGSAPMPLEHIRRFHELTGAQVIEGFGLTEASPVT----------HLNPIHGVQK 370 Query: 357 KSRQGVGTVMQTKIDVVDPVTGAAVKRDGSTLGEVVLRGGSVMLGYLKDPEGTAKSMTAD 416 GV T+ VVD G G +GE+++RG VM GYL P+ TA ++ + Sbjct: 371 PGSIGV-PFPDTEARVVDMEVGLVPLPPGK-IGELIIRGPQVMQGYLNRPDETANTLR-N 427 Query: 417 GWFYTGDVGVMHPDGYLEIKDRSKDVIISGGENLSSVEVESILYSHPDILEAAVVARPDE 476 GW YTGD+ M DGY I DR KD+II GG N+ E++ +L+ HP + EA V P Sbjct: 428 GWLYTGDIATMDEDGYFFIVDRKKDMIIVGGYNVYPREIDEVLHEHPKVKEAVTVGVPHA 487 Query: 477 FWGETPCAFVSLKKGLTKKPTEKEIVEYCRSKLPRYMVPKTVVFKEELPKTSTGKVQKFI 536 GE A++ ++G+ K T+ EIV +CR +L Y VPK V F+ ELPKT GKV + I Sbjct: 488 TRGEIIKAYIVPREGV--KLTKAEIVAHCREQLANYKVPKQVEFRNELPKTIVGKVLRRI 545 Query: 537 LR 538 LR Sbjct: 546 LR 547 Lambda K H 0.319 0.135 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 811 Number of extensions: 51 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 556 Length of database: 564 Length adjustment: 36 Effective length of query: 520 Effective length of database: 528 Effective search space: 274560 Effective search space used: 274560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory