Align AapM, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized)
to candidate 206177 DVU0751 amino acid ABC transporter, permease protein, His/Glu/Gln/Arg/opine family
Query= TCDB::Q52814 (384 letters) >MicrobesOnline__882:206177 Length = 596 Score = 145 bits (365), Expect = 4e-39 Identities = 80/206 (38%), Positives = 126/206 (61%), Gaps = 6/206 (2%) Query: 173 GGLMVTLVLSFVGIAVSLPVGILLALGRRSRMPVIRMLCVTFIEVIRGVPLITVLFMASV 232 GGL +L+++ + I+VS +G+++ +GR S + R+ C+ +IE+IRG PLI V+F Sbjct: 388 GGLAYSLLMAVIAISVSFFIGLVVGIGRTSDNRICRIPCLLYIELIRGNPLIIVIFWIYF 447 Query: 233 MLPLFLPTGWNVDKLLRALIGVSIFTSAYMAEVIRGGLQAIPKGQFEGADSLGLGYWQKT 292 +P+ T +NV A I +++FT AY+AE++R G+Q IP GQ E A S GL + Q Sbjct: 448 FIPVLFNTFFNV--FWSATIALTLFTGAYLAEIVRAGIQNIPAGQVEAAYSTGLTFVQTM 505 Query: 293 RLIIMPQAIKLVIPSIVNTFIGTFKDTSLVTIIGMFDLLGIVKLNFSDANWASAVTPITG 352 R II+PQA+K +IP+IV FI FKDTSL ++G+ +L + + N V P+ Sbjct: 506 RRIILPQALKQMIPAIVGQFIAIFKDTSLAFVLGVLELTFVAQ----GINNRLMVYPMEI 561 Query: 353 LIFAGFIFWLFCFGMSRYSGFMERHL 378 F++++ C+ MS Y+ +ER L Sbjct: 562 YGTVAFLYFICCWSMSVYAARLERRL 587 Score = 113 bits (283), Expect = 1e-29 Identities = 81/234 (34%), Positives = 121/234 (51%), Gaps = 26/234 (11%) Query: 163 GLEVVETPLWGGLMVTLVLSFVGIAVSLPVGILLALGRRSRMPVIRMLCVTFIEVIRGVP 222 GLE+++ GL VT+ +S + A++L +G +L + R S +R+ +E R P Sbjct: 54 GLEILK-----GLGVTVRISLISSALALGLGTVLGIARLSLFAPLRLTATAVVEFFRNTP 108 Query: 223 LITVLFMASVMLPLFLPTGWNVDKLLR--------ALIGVSIFTSAYMAEVIRGGLQAIP 274 L+ LF P LP N+ +LL A IG+S++TSA+MAEVIR GLQ+IP Sbjct: 109 LLVQLFFWYFAFPAILPE--NIRELLFTGNFEFWCATIGLSVYTSAFMAEVIRAGLQSIP 166 Query: 275 KGQFEGADSLGLGYWQKTRLIIMPQAIKLVIPSIVNTFIGTFKDTSLVTIIGMFDLL--- 331 KG E A S GL Y Q R II+P A + +IP + + F+ K++SL ++G+ +L Sbjct: 167 KGLLEAAYSSGLNYVQVLRTIILPMAFRAIIPPLGSEFLNNMKNSSLAMVVGVAELTWQS 226 Query: 332 -GIVKLNFSDANWASAVTPITGLIFAGFIFWLFCFGMSRYSGFMERHLDTGHKR 384 + L F SA T + + L F ++ +G M LDT KR Sbjct: 227 QQVESLTFKGFEATSAAT-----VLYLSLSLLISFILNGVNGKM--RLDTAPKR 273 Lambda K H 0.330 0.145 0.469 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 664 Number of extensions: 41 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 384 Length of database: 596 Length adjustment: 34 Effective length of query: 350 Effective length of database: 562 Effective search space: 196700 Effective search space used: 196700 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory