Align C4-dicarboxylic acid transporter DauA; Dicarboxylic acid uptake system A (characterized)
to candidate 209213 DVU0279 sulfate permease family protein
Query= SwissProt::P0AFR2 (559 letters) >lcl|MicrobesOnline__882:209213 DVU0279 sulfate permease family protein Length = 568 Score = 390 bits (1002), Expect = e-113 Identities = 226/552 (40%), Positives = 326/552 (59%), Gaps = 37/552 (6%) Query: 21 KEKYTAARFTRDLIAGITVGIIAIPLAMALAIGSGVAPQYGLYTAAVAGIVIALTGGSRF 80 +E Y F +DL AG+TVGI+A+PLAMA AI SG P+ GL+TA VAG +I+L GGSR+ Sbjct: 22 REGYDGGTFFKDLAAGLTVGIVALPLAMAFAIASGTTPERGLFTAIVAGFLISLLGGSRY 81 Query: 81 SVSGPTAAFVVILYPVSQQFGLAGLLVATLLSGIFLILMGLARFGRLIEYIPVSVTLGFT 140 + GPT AFV+I++ V + G GL+V TLL+G L++ GL RFG LI+YIP VT GFT Sbjct: 82 QIGGPTGAFVIIIFNVIMKHGYDGLVVTTLLAGAMLLVFGLCRFGALIKYIPYPVTTGFT 141 Query: 141 SGIGITIGTMQIKDFLGLQMAHVPEHYLQKVGALFMALPTINVGDAAIGIVTLGILVFWP 200 +GI + I + Q+KDFLGL M VP + +K A T + I + LG ++ Sbjct: 142 AGIAVLIFSQQVKDFLGLSMQSVPPDFFEKWQAYIHNAATFDPATCGIAFLALGAIILTR 201 Query: 201 RLGIRLPGHLPALLAGCAVMGIVNLLGGHVATIGSQFHYVLADGSQGNGIPQLLPQLVLP 260 + R+PG + ++ V LG V TIGS+F GIP LP LP Sbjct: 202 KTIPRIPGPVVGVVLASLT---VWALGLDVETIGSRF----------GGIPTELPTFTLP 248 Query: 261 WDLPNSEFTLTWDSIRTLLPAAFSMAMLGAIESLLCAVVLDGMTGTKHKANSELVGQGLG 320 T+T + +R LLP A ++A+L IESLL VV DGMTG KH +N EL QG Sbjct: 249 --------TVTLERVRQLLPDAMTIALLAGIESLLSCVVADGMTGDKHNSNVELAAQGAA 300 Query: 321 NIIAPFFGGITATAAIARSAANVRAGATSPISAVIHSILVILALLVLAPLLSWLPLSAMA 380 NI + FGGI AT AIAR+ N+R+G +P++ +IH+ +++ +L LAPL S++PL+++A Sbjct: 301 NIASVMFGGIPATGAIARTVTNIRSGGRTPVAGMIHAAVLVGFILYLAPLASFIPLASLA 360 Query: 381 ALLLMVAWNMSEAHKVVDLLRHAPKDDIIVMLLCMSLTVLFDMVIAISVGIVLASLLFMR 440 A+L++VAW+MSE HK + LL HAPK D++VM L +LTV+ D+ +A+ VG++LASLLFMR Sbjct: 361 AVLMVVAWDMSEMHKFLRLL-HAPKSDVLVMCLTFALTVVIDLTVAVYVGVMLASLLFMR 419 Query: 441 RIARMTRLAPVV--------------VDVPDDVLVLRVIGPLFFAAAEGLFTDLESRLEG 486 R++ +T++ + +DVP+ V V + GP FF A+ L + Sbjct: 420 RMSEVTQICTCLDGEATKVQGRETAELDVPEGVKVYEIDGPFFFGVADRFQNVLAALDRQ 479 Query: 487 KRIVILKWDAVPVLDAGGLDAFQRFVKRL-PEGCELRVCNVEFQPLRTMARAGIQPIPGR 545 + IL+ V LD+ ++A + F ++ +G +L + V T+ R G + G Sbjct: 480 PEVFILRMRKVSTLDSTAVNALEVFWRKCRSDGTQLLLSGVRETMRTTLRRMGTLSLIGE 539 Query: 546 LAFFPNRRAAMA 557 N AA+A Sbjct: 540 GNICENIDAALA 551 Lambda K H 0.328 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 673 Number of extensions: 38 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 568 Length adjustment: 36 Effective length of query: 523 Effective length of database: 532 Effective search space: 278236 Effective search space used: 278236 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory