Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate 207735 DVU2250 AMP-binding protein
Query= BRENDA::A4YDT1 (564 letters) >MicrobesOnline__882:207735 Length = 551 Score = 360 bits (923), Expect = e-103 Identities = 212/530 (40%), Positives = 299/530 (56%), Gaps = 20/530 (3%) Query: 38 FNWVRDVFEDIHVKERGSKTALIWRDINTGEEAKLSYHELSLMSNRVLSTLRKHGLKKGD 97 FN+ DV D E + A+ D + G ++ L+ S R+ + L+ G++KG Sbjct: 24 FNFAFDVL-DAMANETPDRLAIAHVD-DAGVRRDYTFAWLADASARLANALKARGVRKGH 81 Query: 98 VVYLMTKVHPMHWAVFLAVIKGGFVMVPSATNLTVAEMKYRFSDLKPSAIISDSLRASVM 157 V L+ W LA+ + G V +P+ LT ++ +R + A+I D + Sbjct: 82 RVMLVLHRRIEFWVSMLALHRLGAVAIPAPAQLTPKDIVFRVERAQVRAVIVDDGITDRI 141 Query: 158 EEALGSLKVEKFLID----GKRETWNSLEDESSNAEPEDTR---------GEDVIINYFT 204 E A L+ + W E ++A P R GED ++ +F+ Sbjct: 142 EAARPDCPTLSVLVQCGGTPLPDGWCDYEALCADASPSFPRPTAPDELACGEDPLLIFFS 201 Query: 205 SGTTGMPKRVIHTAVSYPVGSITTASIV-GVRESDLHLNLSATGWAKFAWSSFFSPLLVG 263 SGTTGMPK V H +YP+G + T +R DLHL ++ TGW K W F+ + G Sbjct: 202 SGTTGMPKMVEHVH-TYPLGHLVTGMYWHDLRPGDLHLTVADTGWGKAVWGKFYGQWMAG 260 Query: 264 ATVVGINYEGKLDTRRYLGEVENLGVTSFCAPPTAWRQFITLDLDQFRFERLRSVVSAGE 323 A V ++ GK D L V GVT+FCAPPT +R + DL ++ +LR +AGE Sbjct: 261 AAVFVYDFRGKFDPEALLDVVAKNGVTTFCAPPTVYRFLVRADLSRYDLSKLRHCTTAGE 320 Query: 324 PLNPEVIKIWKDKFNLTIRDFYGQTETTAMVGNFPFLKVKPGSMGKPHPLYDIRLLDDEG 383 LN V WK L+I + YGQTETT + ++ KPGS+G+P P + I LLD EG Sbjct: 321 LLNESVFHGWKAATGLSIYEGYGQTETTLQIATLSCMEAKPGSIGRPMPGWGITLLDHEG 380 Query: 384 KEITKPYEVGHITVKLNPR-PIGLFLGY-SDEKKNMESFREGYYYTGDKAYFDEEGYFYF 441 KE E G I ++++ P+GLF GY D +K +GYY+TGDKA+ DE+GY +F Sbjct: 381 KECPTGEE-GEICIRISDGLPVGLFRGYVEDAEKTASVMFDGYYHTGDKAWMDEDGYLWF 439 Query: 442 VGRGDDVIKTSDYRVGPFEVESALLEHPAVAEAAVVGVPDTVRWQLVKAYIVLKKGYMPS 501 +GR DD+IK+S YR+GPFEVESAL+ HPAV EAAV GVPD +R Q VKA IVL GY Sbjct: 440 LGRVDDLIKSSGYRIGPFEVESALVAHPAVVEAAVTGVPDPLRGQAVKATIVLAAGYEAG 499 Query: 502 KELAEEIREKMKTLLSPYKVPRIIEFVDELPKTISGKIRRVELRKREEEK 551 + L +E+++ +K + +PYK PRI+E+V ELPKTISGKI+R E+R+R+ EK Sbjct: 500 EVLTKELQDHVKKVTAPYKYPRIVEYVAELPKTISGKIKRAEIRQRDSEK 549 Lambda K H 0.318 0.137 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 724 Number of extensions: 34 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 564 Length of database: 551 Length adjustment: 36 Effective length of query: 528 Effective length of database: 515 Effective search space: 271920 Effective search space used: 271920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory