Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate 206505 DVU1070 branched chain amino acid ABC transporter, ATP-binding protein
Query= uniprot:B2SYR5 (512 letters) >MicrobesOnline__882:206505 Length = 524 Score = 270 bits (689), Expect = 1e-76 Identities = 169/497 (34%), Positives = 266/497 (53%), Gaps = 13/497 (2%) Query: 1 MSATLRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDSGR 60 ++ +R + IGK F VRA ++ D+ G++ L+GENGAGKSTL+ IL G D+G Sbjct: 31 VTPVVRLEGIGKSFGPVRANHDITLDIVPGRIKALLGENGAGKSTLMSILSGRLAQDTGI 90 Query: 61 VMIDGNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQLPNSLGWVNKREAKRF 120 + +DG VRF S ++ AGI +++Q V +TVAEN+LLGQ S W++ R Sbjct: 91 IHVDGEAVRFRSPKDALKAGIGMVYQHFMLVDSMTVAENVLLGQ---SGAWLSPVHMSRV 147 Query: 121 VRERLEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHRETEVLF 180 V E G+ +DP A++ LS+ +RQ VEI K L R++RV+ LDEPT+ L+ ETE LF Sbjct: 148 VAELAARYGLDIDPAARVCDLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPGETEQLF 207 Query: 181 KLVRDLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIVSEMVGR 240 + + + + +A+++ISH+M E+ L D I R G + E + + MVGR Sbjct: 208 EALHRMAENGKAIVFISHKMQEVLALADEIAILRRGEVVDEFHESEVPGEAELANRMVGR 267 Query: 241 EISDIYNYSARPL--GEVRFAAKGIEGHALAQPASFEVRRGEIVGFFGLVGAGRSELMHL 298 E+ I +A PL G+ G+ G L + SFEVR+GE+ G+ G G+ EL+ Sbjct: 268 EV--ILEVAAEPLEPGDRVLHVDGLAGDGL-KGLSFEVRKGEVFAIAGVAGNGQRELVEC 324 Query: 299 VYGADHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMATVSENINISCRR 358 V G GE+ L G P + + G+ PEDR+ + +N ++ R Sbjct: 325 VTGLRRPAEGEVELLGIPWRQFFTKAPRQGGLAYIPEDRQGLATCLSLDLVDNFLLTARG 384 Query: 359 HYLRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAILSR-WLAEPDLK 417 + R G FLDRK A + ++ R LSGGN QK ++ R + +P L Sbjct: 385 CFTR-GPFLDRKSADAAARDILAEYNVQPGRAEAPARSLSGGNLQKLVVGREFYRKPSL- 442 Query: 418 VVILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDRIVVMRQGRISG 477 ++ + PT+G+D+ A E++ + ++ ++++S +L EVL ++DR+ VM +G G Sbjct: 443 -IVAENPTQGLDIAATEEVWARLLEVRSH-AGVLLVSGDLNEVLALADRVAVMYRGCFIG 500 Query: 478 ELTRKDATEQSVLSLAL 494 L R D + + L + Sbjct: 501 LLDRSDTNKVDAIGLMM 517 Lambda K H 0.320 0.136 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 44 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 524 Length adjustment: 35 Effective length of query: 477 Effective length of database: 489 Effective search space: 233253 Effective search space used: 233253 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory