Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate 208900 DVU3373 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >MicrobesOnline__882:208900 Length = 554 Score = 315 bits (807), Expect = 3e-90 Identities = 193/546 (35%), Positives = 302/546 (55%), Gaps = 20/546 (3%) Query: 27 HRGWLKNQGYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPV 86 HR L G + RP++G++N +++ P + HL ++AE VKAGV AGG PLE P Sbjct: 15 HRSLLHALGLTREEL-ARPLVGVVNAANEVVPGHIHLDDIAEAVKAGVRAAGGTPLEFPA 73 Query: 87 FSASEN-TFRPTAMMY----RNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASC 141 + + M + R L A ++E P D V + CDK+ P +LM Sbjct: 74 IAVCDGLAMNHEGMRFSLPSRELIADSIEIMATAHPFDALVFIPNCDKSVPGMLMAMLRL 133 Query: 142 DLPSIVVTGGPMLNGYFRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSSGTCN 201 D+PS++V+GGPML G R T +++ V+ G+MT+AE E G+C Sbjct: 134 DVPSVMVSGGPMLAGATLAGRADLIT-VFEGVGRVQRGDMTEAELDELVEGACPGCGSCA 192 Query: 202 TMGTASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMTKQ 261 M TA++M +AE +G+AL GN P V + R +A+ G ++++M++ +++P +I+T++ Sbjct: 193 GMFTANSMNCLAETIGLALPGNGTTPAVTAARIRLAKHAGMKVMEMLERNIRPRDIVTEK 252 Query: 262 AFENAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLME 321 A NA+ + A+G STN V+HL A+ G+DL+LD +D+ R P + L P+G + ++ Sbjct: 253 AVANAVAVDMALGCSTNTVLHLPAVFAEAGLDLTLDIFDKVSRKTPNLCKLSPAGHHHIQ 312 Query: 322 EFFYAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVN---WNEDVILPAEKALTS 378 + AGG+P V+ L GL+ + A+TV+G TV + + D + + DVI P + + Sbjct: 313 DLHAAGGIPAVMAELDRIGLIDRSAMTVTGRTVGENL-DALGAKVRDADVIRPVDAPYSP 371 Query: 379 SGGIVVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENCIM 438 GGI +L+G+LAP GAV+K SA +P ++V + A VF+ + I + + + Sbjct: 372 QGGIAILKGSLAPGGAVVKQSAVAPEMMVREAVARVFDSEEAACEAIMGGRIKAGD--AI 429 Query: 439 VMKNCGPKGYPGMAEVGNMGLPPKVLKKGI---LDMVRISDARMSGTAYGTVVLHTSPEA 495 V++ GPKG PGM E+ L P G+ D+ I+D R SG G + H SPEA Sbjct: 430 VIRYEGPKGGPGMREM----LTPTSAIAGMGLGADVALITDGRFSGGTRGAAIGHVSPEA 485 Query: 496 AVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTSGYAFLHQQHVE 555 A GGP+ +V+ GD I +D+P R L L + ++ELARR A + P TS + + V Sbjct: 486 AEGGPIGLVQEGDRIRIDIPARALDLLVDEDELARRRAAFVPVEKEITSPLLRRYARMVS 545 Query: 556 GADTGA 561 A TGA Sbjct: 546 SAATGA 551 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 887 Number of extensions: 54 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 554 Length adjustment: 36 Effective length of query: 543 Effective length of database: 518 Effective search space: 281274 Effective search space used: 281274 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory