Align Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized)
to candidate 206505 DVU1070 branched chain amino acid ABC transporter, ATP-binding protein
Query= SwissProt::P23924 (506 letters) >MicrobesOnline__882:206505 Length = 524 Score = 259 bits (663), Expect = 1e-73 Identities = 158/490 (32%), Positives = 264/490 (53%), Gaps = 9/490 (1%) Query: 13 LLEMRGINKSFPGVKALDNVNLNVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGSIVF 72 ++ + GI KSF V+A ++ L++ P I AL+GENGAGKSTL+ L G +D+G I Sbjct: 34 VVRLEGIGKSFGPVRANHDITLDIVPGRIKALLGENGAGKSTLMSILSGRLAQDTGIIHV 93 Query: 73 QGKEVDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYQDTKA 132 G+ V F S K+AL+ GI MV+Q LV +V +N+ LG+ G ++ M + Sbjct: 94 DGEAVRFRSPKDALKAGIGMVYQHFMLVDSMTVAENVLLGQ---SGAWLSPVHMSRVVAE 150 Query: 133 IFDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTII 192 + +DIDP ARV LS+ + Q +EI K +++++I+DEPT+ LT E LF + Sbjct: 151 LAARYGLDIDPAARVCDLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPGETEQLFEAL 210 Query: 193 RKLKERGCGIVYISHKMEEIFQLCDEITILRDGQWI-ATQPLEGLDMDKIIAMMVGRSLN 251 ++ E G IV+ISHKM+E+ L DEI ILR G+ + E ++ MVGR + Sbjct: 211 HRMAENGKAIVFISHKMQEVLALADEIAILRRGEVVDEFHESEVPGEAELANRMVGREVI 270 Query: 252 QRFPDKENKPGDVILEVRHLTSLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLFG 311 + +PGD +L H+ L ++ +SF++ KGE+ IAG+ G + ++VE + G Sbjct: 271 LEVAAEPLEPGDRVL---HVDGLAGDGLKGLSFEVRKGEVFAIAGVAGNGQRELVECVTG 327 Query: 312 IREKSSGTITLHGKKINNHTANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRNYK 371 +R + G + L G G A + E+R+ LD+ N L++ R Sbjct: 328 LRRPAEGEVELLGIPWRQFFTKAPRQGGLAYIPEDRQGLATCLSLDLVDNFLLT-ARGCF 386 Query: 372 NKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPEILMLD 431 + LD + + ++ V+ SLSGGN QK+++GR +P +++ + Sbjct: 387 TRGPFLDRKSADAAARDILAEYNVQPGRAEAPARSLSGGNLQKLVVGREFYRKPSLIVAE 446 Query: 432 EPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIVDTK 491 PT+G+D+ A E++ + E+ + G++++S ++ E+L + DR+ VM G G++D Sbjct: 447 NPTQGLDIAATEEVWARLLEV-RSHAGVLLVSGDLNEVLALADRVAVMYRGCFIGLLDRS 505 Query: 492 TTTQNEILRL 501 T + + + L Sbjct: 506 DTNKVDAIGL 515 Lambda K H 0.319 0.137 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 577 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 524 Length adjustment: 35 Effective length of query: 471 Effective length of database: 489 Effective search space: 230319 Effective search space used: 230319 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory