GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Desulfovibrio vulgaris Hildenborough

Align TRAP-type large permease component (characterized, see rationale)
to candidate 208332 DVU2823 TRAP dicarboxylate transporter family protein

Query= uniprot:Q930R2
         (425 letters)



>MicrobesOnline__882:208332
          Length = 591

 Score =  288 bits (738), Expect = 2e-82
 Identities = 160/410 (39%), Positives = 241/410 (58%), Gaps = 17/410 (4%)

Query: 14  MAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIPFFILAGELMNAGG 73
           +A+GVP+A  L    +  +   G    + IAQ      D+F ++AIPFFI AG  M AGG
Sbjct: 182 LAVGVPIAIGLGLAALATIIAAGTLPIEYIAQVAFTSIDSFPIMAIPFFIAAGVFMGAGG 241

Query: 74  LSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILIPMMAKAGYNV 133
           LSRR++  A   +G + GG+ +  I   +  A+ISGS  A  AA+ ++ IP M + GY+ 
Sbjct: 242 LSRRLLTLADEMLGSLHGGMALATIGTCMFFAAISGSGPATVAAIGSLTIPAMVERGYDK 301

Query: 134 PRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGIALVAT----- 188
             SA ++AA G I  +IPPS  F+V+GV+A VSI +LF+ GIVPG++ G+AL+       
Sbjct: 302 YFSAAVVAAAGAIGVMIPPSNPFVVYGVSAQVSIGKLFLGGIVPGVLTGLALMVYSYWYS 361

Query: 189 ----WLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPTEAAVVA 244
               W   VR  +++   R        A   A WAL +PVI+LGGI  G++TPTEAA +A
Sbjct: 362 KKRGWKGEVRVRNLRTFTR--------ALWDAKWALMVPVIVLGGIYGGIMTPTEAAALA 413

Query: 245 AVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITGF 304
           A Y LFVG  I+REL    L   I++AA T+AV++ L+  A +   ++T   +P+ I   
Sbjct: 414 AFYGLFVGCFIHRELNCGSLYDCIVEAAGTSAVVIVLMAMATIFGNIMTIEEVPTAIATA 473

Query: 305 ISPLIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFGVLFIMN 364
           +  L +    ++ +I ++++V+GT ++    I+ILTP+L+PI+ + G+DPV+FGV+ ++N
Sbjct: 474 MLNLTENKIAILMLINVLLIVIGTFMEALAAIVILTPILLPIVLKVGVDPVHFGVIMVVN 533

Query: 365 TCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFP 414
             IG + PPVGV L V SGV    +  +   V P +   I VL L+   P
Sbjct: 534 LAIGFVPPPVGVNLFVASGVAHAKIEHLSKVVMPLIAIMIGVLLLITYVP 583


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 571
Number of extensions: 27
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 591
Length adjustment: 34
Effective length of query: 391
Effective length of database: 557
Effective search space:   217787
Effective search space used:   217787
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory