Align PEP-dependent dihydroxyacetone kinase, phosphoryl donor subunit DhaM; Dihydroxyacetone kinase subunit M; EC 2.7.1.121 (characterized)
to candidate 206413 DVU0981 multiphosphoryl transfer protein, putative
Query= SwissProt::D4GL26 (473 letters) >lcl|MicrobesOnline__882:206413 DVU0981 multiphosphoryl transfer protein, putative Length = 854 Score = 292 bits (747), Expect = 3e-83 Identities = 197/507 (38%), Positives = 272/507 (53%), Gaps = 45/507 (8%) Query: 1 MVNLVIVSHSAMLGEGVEMLARQMLTGDNCRIAVAAGIDDPDHPIGTDPIKVMEAIEAVA 60 MV +V+V+HSA+LG+G+ LA QM G +AVA GIDDPDHPIGTDP++VM AIE V Sbjct: 1 MVGIVVVTHSAVLGQGLRELAEQMTQG-RVPLAVAGGIDDPDHPIGTDPVRVMTAIEEVQ 59 Query: 61 DTDHVLVMMDMGSALLSAETALDLLDPVIAEKVRLCAAPLVEGTLAATVSAAAGADIDTV 120 D VLV+MD+GSAL+SAETALDLL P +A +VRL AAPLVEG +AA V A+ GAD+ V Sbjct: 60 QGDGVLVLMDLGSALMSAETALDLLPPEVASQVRLSAAPLVEGLMAAAVLASTGADLGAV 119 Query: 121 IDVAMNALAAKQAQLGITPPAHAASLPAQAPDSDARS------------VTVTIRNHHGL 168 + A +ALAAK+ LG PA A ++P+ P+ S +T+ + N GL Sbjct: 120 AEEAQSALAAKRELLGAAAPA-APAMPSAHPEGARDSTVPSSAMPAGEELTLVVPNRLGL 178 Query: 169 HVRPASRLVAALAGMNADLVLEKQGQCVKPDSLNQIALLQVRCHDAVTLSASGPDAERAL 228 H RPA+R+V AL AD+ L + + V S+N+IA L VR + VT A G DA AL Sbjct: 179 HARPAARIVTALGPFAADVQLVRGDRVVSARSVNRIATLAVRGGETVTFRAVGGDAALAL 238 Query: 229 AAFESLAAEDFGEHPESMA------------------------------LKTSASTVEKV 258 A E+LAA FG+ PE+ + L+ +A++ Sbjct: 239 RAIEALAAAHFGDAPEAPSKGEAPSPAEAPKDGDMAEAAVSADVQGGGVLRGAAASPGLT 298 Query: 259 QGKAVFYPLPLAQPARHP-CSDVGQEERRLQQAIVDTLNDLNALAALAEKKYGASVAAIF 317 G AV+Y P P D E RL A+ +L L G A IF Sbjct: 299 VGNAVWYRPAFDAPDVAPLADDPATEVTRLDAALGAARTELVELERRTVAAAGRKEAEIF 358 Query: 318 SGHYTLLDDPDLFDAACKVIRNDSCCAESAWYQVLMELSQQYQHLDDAYLQARFIDIEDI 377 + H LLDD + AA + I + AESAWY+V+ + + ++ L + Y++ R D+ D+ Sbjct: 359 AMHRLLLDDVTIAGAARQRIMDRREAAESAWYEVISDAAATFRQLPEGYMREREADMVDV 418 Query: 378 LYRSLCHLKGRDIRLPTPDVPAIIVADDIFPSAVVNLNAQLVKGICLREGSTLSHAAIIA 437 R L L G P P++++A D+ PS + L+ LV GI +G SHAAI+A Sbjct: 419 GARVLRLLTGVAAVGPRLGGPSVLLATDLGPSDMATLDPSLVIGIVTVQGGATSHAAILA 478 Query: 438 QQAGIAFICQQGAVLDIIQPEDRLLID 464 + GI + G L + D + +D Sbjct: 479 RSLGIPAVAGLGPALQGVGEGDIVALD 505 Lambda K H 0.320 0.133 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 862 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 854 Length adjustment: 38 Effective length of query: 435 Effective length of database: 816 Effective search space: 354960 Effective search space used: 354960 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory