Align Glycerol-3-phosphate dehydrogenase SDP6, mitochondrial; Protein SUGAR-DEPENDENT 6; EC 1.1.5.3 (characterized)
to candidate 208651 DVU3132 glycerol-3-phosphate dehydrogenase, FAD-dependent
Query= SwissProt::Q9SS48 (629 letters) >lcl|MicrobesOnline__882:208651 DVU3132 glycerol-3-phosphate dehydrogenase, FAD-dependent Length = 546 Score = 425 bits (1092), Expect = e-123 Identities = 227/552 (41%), Positives = 332/552 (60%), Gaps = 20/552 (3%) Query: 70 ASDPLDVLVIGGGATGSGVALDAVTRGLRVGLVEREDFSSGTSSRSTKLIHGGVRYLEKA 129 A D+L++GGGATG GVALDA TRGL V LVER+DF+ GTSS+STKL+HGGVRYLEKA Sbjct: 12 ADKTFDLLIVGGGATGCGVALDAATRGLDVALVERDDFAQGTSSKSTKLVHGGVRYLEKA 71 Query: 130 VFNLDYGQLKLVFHALEERKQLIENAPHLCHALPCMTPCFDWFEVIYFWMGLKMYDLVAG 189 + D Q LV L ER L+ NAPHL H + MTP W + Y + GL MYDL+AG Sbjct: 72 ILKADKEQFALVHEGLRERGYLLRNAPHLAHPVQLMTPVDSWKDAGYLFAGLTMYDLLAG 131 Query: 190 PRLLHLSRYYSAKESIELFPTLARKGKDKNLRGTVVYYDGQMNDSRLNVGLACTAALAGA 249 L SR+ + ++ LFPTL R GK K G V+YYDGQ ND+R+ V LA TAAL GA Sbjct: 132 RLGLGHSRFVTRSKAQRLFPTL-RLGKAK---GAVLYYDGQFNDARMAVTLARTAALHGA 187 Query: 250 AVLNHAEVVSLITDDATKRIIGARIRNNLTGQEFNSYAKVVVNAAGPFCDSIRKMIDEDT 309 NH EV+ L+ ++ R+ GA +R+ +G+ + A+ ++NA GPF D +R+M D++ Sbjct: 188 TCANHVEVIDLVRENG--RLCGAVLRDVNSGETWQVRARGIINATGPFSDGLRRMDDQNA 245 Query: 310 KPMICPSSGVHIVLPDYYSPEGMGLIVPKTKDGRVVFMLPWLGRTVAGTTDSNTSITSLP 369 ++ SSG+H+V+ ++P +GL+VP+T DGRV+FM+PW G V GTTD I+ P Sbjct: 246 CDILKVSSGIHLVIDPGHTPPHLGLMVPRTDDGRVLFMIPWQGHVVFGTTDEPVDISRDP 305 Query: 370 EPHEDEIQFILDAISDYLNIKVRRTDVLSAWSGIRPLAMDPTAKSTESISRDHVVFEENP 429 P +++I ++L+ YL+ + R DV +AW G+RPL + T+ ++R HV+ Sbjct: 306 VPTQEDIDYLLNYAGRYLSRPLSRDDVRAAWCGLRPLVFEADKSCTQELARTHVIEVSPG 365 Query: 430 GLVTITGGKWTTYRSMAEDAVDAAIKSGQLKPTNECVTQKLQLLGSYGWEPSSFTTLAQQ 489 GL+TITGGKWT+YR MAED +D A + +L CVT+ L+++GS G+ + +A+ Sbjct: 366 GLLTITGGKWTSYRRMAEDTIDRADAAFELGLQRPCVTRDLRVIGSRGFVRGAHAEMARD 425 Query: 490 YVRMKKTYGGKVVPGAMDTAAAKHLSHAYGSMADRVATIAQEEGLGKRLAHGHPFLEAEV 549 + +D A A+ L +G + T+A+EEGL RL H ++ A+V Sbjct: 426 F--------------GVDPALARGLFELHGDETPLILTLAREEGLMDRLHPAHNYIGAQV 471 Query: 550 AYCARHEYCESAVDFIARRCRIAFLDTDAAARALQRVVEILASEHKWDKSRQKQELQKAK 609 A+ RHE D + RR + +D A +I+A E WD + +++E++ Sbjct: 472 AFAVRHEMAVHLTDVMVRRLPLGLVDVQHTLEASAPAADIMAQELGWDAATRQREMEALA 531 Query: 610 EFLETFKSSKNA 621 +L ++ + +A Sbjct: 532 AYLAAWRPAPDA 543 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 762 Number of extensions: 40 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 629 Length of database: 546 Length adjustment: 37 Effective length of query: 592 Effective length of database: 509 Effective search space: 301328 Effective search space used: 301328 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory