Align Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) (characterized)
to candidate 207299 DVU1834 pyruvate carboxylase, putative
Query= reanno::pseudo1_N1B4:Pf1N1B4_3984 (651 letters) >MicrobesOnline__882:207299 Length = 1234 Score = 328 bits (842), Expect = 7e-94 Identities = 193/457 (42%), Positives = 268/457 (58%), Gaps = 7/457 (1%) Query: 9 LLVANRGEIACRVMRTAKALGLTTVAVHSATDRDARHSREADIRVDLGGSKAADSYLQID 68 +LVANRG A R+ R+ + VAV +ATD D + + L +YL ID Sbjct: 18 ILVANRGIPARRICRSIRER-FDAVAVMTATDVDKTSPAASAAQELLLLGADPRAYLDID 76 Query: 69 KLIAAAKASGAQAIHPGYGFLSENAGFARAIEAAGLIFLGPPASAIDAMGSKSAAKALME 128 ++I+ AK G AIHPG+GF SE+ F AGL F+G A A++ +G+K + L Sbjct: 77 RIISLAKQRGVVAIHPGWGFASEDDRFPSKCHEAGLTFIGSTAEAMNLLGNKVQVRKLAR 136 Query: 129 TAGVPLVPGYHGEAQDLETFRDACERIGYPVLLKATAGGGGKGMKVVEDVSQLAEALASA 188 GVP+VPG G A D+ T R + IG P++LKA GGGG+G+ + D S+L +A A Sbjct: 137 KLGVPVVPGSEG-AVDIPTARKLIDEIGLPIMLKAEGGGGGRGIFAIRDESELDDAFFKA 195 Query: 189 QREALSSFGDSRMLVEKYLLKPRHVEIQVFADQHGNCLYLNERDCSIQRRHQKVVEEAPA 248 A +SFG+ R+ VEKYL RH+EIQV AD +GN +ERDCSIQR HQK++E P+ Sbjct: 196 STMAQASFGNPRLFVEKYLESVRHIEIQVIADMYGNAFAFDERDCSIQRNHQKLIEITPS 255 Query: 249 --PGLSPELRRAMGEAAVRSAQAIGYVGAGTVEFLLDARGEFFFMEMNTRLQVEHPVTEA 306 PG++PELR + E + + +GY TVEFL+ A GE + +E+NTRLQVEH +TE Sbjct: 256 PWPGITPELREKLKEYSKMLVREVGYHSLATVEFLVTASGEAYLIEVNTRLQVEHGITEC 315 Query: 307 ITGLDLVAWQIRVARGEALPMTQDQVPLIGHAIEVRLYAEDPGNDFLPATGRLALYRESA 366 G+DLV QI VA G L +T++ + HA++VR+ EDP F P +G ++ Y S Sbjct: 316 RYGIDLVEEQIAVAFGAQLRLTEENTKPVHHAMQVRINCEDPQAGFSPNSGLVSRY-VSP 374 Query: 367 AGPGRRVDSGVEEGDEISPFYDPMLGKLIAWGEDREQARLRLLSMLDEFAIGGLKTNINF 426 GPG R+DS + G E P YD LI +G+ ++ + L E+ IGGLKT I F Sbjct: 375 GGPGVRLDSNMCAGYEFPPNYDSAGSLLITYGQGWQKVLGIMERCLSEYIIGGLKTTIPF 434 Query: 427 LRRIIGHPAFAAAELDTGFIPRYQEQLLPAPSDLSDE 463 ++++ HP F A + DT FI E L +DL+ E Sbjct: 435 YKQVMKHPRFRAGDFDTNFIAETPE--LMCYTDLAPE 469 Score = 36.6 bits (83), Expect = 7e-06 Identities = 28/87 (32%), Positives = 44/87 (50%), Gaps = 8/87 (9%) Query: 570 ISAVE-ASHSHQGGLTAPMNGSIVRVLVEAGQTVEAGAQLVVLEAMKMEHSIRAPHAGII 628 I VE A ++ + AP NG + + V G V+ G +L + MK E ++ AP ++ Sbjct: 1115 IKGVEMADRANPMHVAAPSNGDLWVMYVHPGDVVKKGEELFNVSIMKQEKAVLAPMDAMV 1174 Query: 629 K-----ALYCQEGEMVS--EGSALVEL 648 K A Y + +MV+ EG +VEL Sbjct: 1175 KRVLKTADYRESKQMVAVREGELVVEL 1201 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1739 Number of extensions: 81 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 1234 Length adjustment: 43 Effective length of query: 608 Effective length of database: 1191 Effective search space: 724128 Effective search space used: 724128 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory