Align Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) (characterized)
to candidate 207710 DVU2226 acetyl-CoA carboxylase, biotin carboxylase, putative
Query= reanno::pseudo1_N1B4:Pf1N1B4_3984 (651 letters) >MicrobesOnline__882:207710 Length = 471 Score = 219 bits (559), Expect = 2e-61 Identities = 164/463 (35%), Positives = 240/463 (51%), Gaps = 51/463 (11%) Query: 9 LLVANRGEIACRVMRTAKALGLTTVAVHSATDRDARHSREADIRVDLGGSKA---ADSYL 65 +LVANRGEIA R++R LGL V++A D + H R A +LGG+ + SY Sbjct: 8 VLVANRGEIATRIVRACHRLGLEFTCVYTAEDAASGHVRLAR---ELGGANSLYRVSSYH 64 Query: 66 QIDKLIAAAKASGAQAIHPGYGFLSENAGFARAI--EAAGLIFLGPPASAIDAMGSKSAA 123 ++L+A A +G A+HPGYGF +E+ FAR + LIF+GP I +G K Sbjct: 65 DANELLAVADDAGCTAVHPGYGFFAEDYRFARRVAQRERKLIFIGPSWRVIRELGDKINT 124 Query: 124 KALMETAGVPLVPGYHGE----------AQDLETFRDACERIGYP-VLLKATAGGGGKGM 172 K L + GVP VPG AQ L F++ + I P VL+KA+AGGGG G+ Sbjct: 125 KRLARSLGVPTVPGSDKPIYDELEAEKVAQSLYEFQEQ-QGIRRPLVLVKASAGGGGMGI 183 Query: 173 KVVEDVSQLAEALASAQREALSSFGDSRMLVEKYLLKPRHVEIQVFADQHG-NCLYLNER 231 + V D+ + AL F D +L+E+ + H+E+Q+ +D+ G N ++ R Sbjct: 184 EEVYDLDLFKSVYRRIRNYALRQFKDEGVLIEQRIRDFNHLEVQIVSDRTGRNPVHFGTR 243 Query: 232 DCSIQR-RHQKVVEEAPAPGLSP----------ELRRAMGEAAVRSAQAIGYVGAGTVEF 280 +CSIQ QK +E APG P ++ R + ++ A+ +GY GT E+ Sbjct: 244 NCSIQSIGLQKRIE--VAPGFDPTSIEYGFDAAQVLRDITYHSLAMARKVGYDNVGTWEW 301 Query: 281 LLDARGEFFFMEMNTRLQVEHPVTEAIT-----GLDLVAWQIRVARGEALPMTQDQVPLI 335 ++ G F ME+NTR+QVE+ V+ I +DL+A QIR+ G+ L Q+ + Sbjct: 302 IVTRDGHPFLMEVNTRIQVENGVSARIARVNGQEVDLIAEQIRIGLGQPLGYGQEDITFE 361 Query: 336 GHAIEVRLYAEDPGNDFLPATGRLALY---RESAAGPGRRVDSGVEEGDEISPFYDPMLG 392 G IE RL AEDP N F P GR+ + E A V + EE +I +DP L Sbjct: 362 GVGIEYRLIAEDPDNRFTPWVGRIDAFGWPEEDWARMYTHVPT--EEPYDIPTEFDPNLA 419 Query: 393 KLIAWGEDREQARLRLLSMLDEFAIGG-------LKTNINFLR 428 I WG+D E+ + R +S L+ + G L++N+NFLR Sbjct: 420 LAIIWGKDLEEVKRRGVSFLEGLTLQGQNKAGDELRSNVNFLR 462 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 638 Number of extensions: 35 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 651 Length of database: 471 Length adjustment: 36 Effective length of query: 615 Effective length of database: 435 Effective search space: 267525 Effective search space used: 267525 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory