Align Inositol transport system ATP-binding protein (characterized)
to candidate 206505 DVU1070 branched chain amino acid ABC transporter, ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >MicrobesOnline__882:206505 Length = 524 Score = 145 bits (366), Expect = 2e-39 Identities = 82/242 (33%), Positives = 136/242 (56%), Gaps = 9/242 (3%) Query: 6 PLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDIL 65 P++R++GI K FG V A +++D+ PG LLG+NGAGKST + +SG G I Sbjct: 33 PVVRLEGIGKSFGPVRANHDITLDIVPGRIKALLGENGAGKSTLMSILSGRLAQDTGIIH 92 Query: 66 FEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYAN 125 +G+ + F P+DA+ AGI V+QH ++ M+V+ N +G + P+ + + Sbjct: 93 VDGEAVRFRSPKDALKAGIGMVYQHFMLVDSMTVAENVLLGQSG-AWLSPV------HMS 145 Query: 126 RITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTA 185 R+ E + G+++ P V LS GERQ V I + ++ ++VLILDEPT+ L +T Sbjct: 146 RVVAELAARYGLDI-DPAARVCDLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPGETE 204 Query: 186 NVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAE-ELQDMM 244 + + ++ + G A+VFI+H ++ LA+ D +L RG+ + ++ E EL + M Sbjct: 205 QLFEALHRMAENGKAIVFISHKMQEVLALADEIAILRRGEVVDEFHESEVPGEAELANRM 264 Query: 245 AG 246 G Sbjct: 265 VG 266 Score = 72.0 bits (175), Expect = 2e-17 Identities = 54/228 (23%), Positives = 98/228 (42%), Gaps = 6/228 (2%) Query: 23 LAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQP---LHFADPRDA 79 L G+S +V GE + G G G+ ++ ++G+ +P +G++ G P PR Sbjct: 295 LKGLSFEVRKGEVFAIAGVAGNGQRELVECVTGLRRPAEGEVELLGIPWRQFFTKAPRQG 354 Query: 80 IAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGINL 139 A I Q LA + + NF + GP D A+ + + + + Sbjct: 355 GLAYIPEDRQGLATCLSLDLVDNFLLTARGCFTRGP--FLDRKSADAAARDILAEYNVQP 412 Query: 140 RGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGV 199 + +LSGG Q + + R + +++ + PT L + T V A + +VR Sbjct: 413 GRAEAPARSLSGGNLQKLVVGREFYRKPSLIVAENPTQGLDIAATEEVWARLLEVRSH-A 471 Query: 200 AVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAGG 247 V+ ++ ++ LA+ DR V+ RG +G R D + + +M G Sbjct: 472 GVLLVSGDLNEVLALADRVAVMYRGCFIGLLDRSDTNKVDAIGLMMAG 519 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 329 Number of extensions: 18 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 524 Length adjustment: 30 Effective length of query: 231 Effective length of database: 494 Effective search space: 114114 Effective search space used: 114114 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory