GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Desulfovibrio vulgaris Hildenborough

Align Glycine betaine/proline betaine transport system ATP-binding protein ProV (characterized)
to candidate 207786 DVU2299 glycine/betaine/L-proline ABC transporter, ATP binding protein

Query= SwissProt::P17328
         (400 letters)



>MicrobesOnline__882:207786
          Length = 397

 Score =  365 bits (936), Expect = e-105
 Identities = 194/397 (48%), Positives = 273/397 (68%), Gaps = 7/397 (1%)

Query: 4   KLEVKNLYKIFGEHPQRAFKYIEKGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGLS 63
           KL ++NL KIFG HP++A   +E+GL KE+I  +T  ++GV  AS  +EEGEI V+MGLS
Sbjct: 3   KLSIRNLTKIFGPHPEKALGLLEQGLGKEEIHRRTSHAVGVDRASFDVEEGEIVVVMGLS 62

Query: 64  GSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMTV 123
           GSGKST+VR LNRLIEPT G V +DG D+  +   ELR +R++   MVFQ+FAL PH TV
Sbjct: 63  GSGKSTLVRCLNRLIEPTAGTVTVDGRDVTSMPVDELRRLRQRSFGMVFQNFALFPHRTV 122

Query: 124 LDNTAFGMELAGIAAQERREKALDALRQVGLENYAHAYPDELSGGMRQRVGLARALAINP 183
           L N AFG+E  G+   ER  +A+ +L +VGL  +A + P +LSGGM+QRVGLARAL+++P
Sbjct: 123 LQNAAFGLEAMGVPRAERERQAMVSLERVGLAEWAASRPAQLSGGMQQRVGLARALSLDP 182

Query: 184 DILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGEV 243
           DILLMDEAFSALDPLIR +MQDEL++LQ   Q+TIVFISHDLDEA+++GDRI +M++G V
Sbjct: 183 DILLMDEAFSALDPLIRRDMQDELLRLQDDLQKTIVFISHDLDEALKLGDRIVLMRDGAV 242

Query: 244 VQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRSPVGLIRKTPGFGPRSALKLL 303
           VQ+GTP++IL NPA+DYV  F    D+++V +A  + +RS    +      GPR+AL+ +
Sbjct: 243 VQIGTPEDILTNPADDYVARFVGEADVTKVLTAGSVMKRSEAVAVLGID--GPRTALRKM 300

Query: 304 QDEDREYGYVIERGNKFVGVVSIDSLKAALSQAQGIE---AALIDDPLVVDAQTPLSELL 360
           +       +V++  ++ VG+++ D   AA   A+G+    + +  D   V  + P +EL+
Sbjct: 301 RRNAIATLFVLDERHRLVGLITADD--AARLAAEGVRELGSIVRRDIATVPPEAPATELI 358

Query: 361 SHVGQAPCAVPVVDEEHQYVGIISKRMLLQALDREGG 397
           S +   P  + VVDE  +  G+I + +LL AL   GG
Sbjct: 359 SLMADLPHPLAVVDERGRLAGVIVRGLLLGALAERGG 395


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 476
Number of extensions: 21
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 397
Length adjustment: 31
Effective length of query: 369
Effective length of database: 366
Effective search space:   135054
Effective search space used:   135054
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory