Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19); betaine-aldehyde dehydrogenase (EC 1.2.1.8) (characterized)
to candidate 208845 DVU3319 proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydrogenase
Query= BRENDA::Q9S795 (501 letters) >MicrobesOnline__882:208845 Length = 1006 Score = 234 bits (596), Expect = 1e-65 Identities = 161/494 (32%), Positives = 244/494 (49%), Gaps = 24/494 (4%) Query: 7 TRQLFIDGEWREPILKKRIPIVNPATE-EVIGDIPAATTEDVDVAVNAARRALSRNKGKD 65 T L+I G R+ IP NPA EV+ I A ++D A+ AA++A Sbjct: 511 TVPLYIGG--RDVTTADLIPTTNPAKPAEVVASICQAGRPEIDDAIAAAKKA-----ALT 563 Query: 66 WAKAPGAVRAKYLRAIAAKVNERKTDLAKLEALDCGKPLDEAVWDMDDVAGCFEFYADLA 125 W A RA YLR A +R +L+ + ++ GK D+A D+ + E+YA Sbjct: 564 WRDTSPADRAAYLRRAADICRKRIWELSAWQVVEVGKQWDQAYHDVTEGIDFLEYYAREM 623 Query: 126 EGLDAKQKAPVSLPMESFKSYVLKQPLGVVGLITPWNYPLLMAVWKVAPSLAAGCTAILK 185 L A ++ + P E +++ QP G+ +I PWN+P +A+ + ++ G I K Sbjct: 624 LRLGAPRRMGRA-PGEH--NHLFYQPKGIAAVIAPWNFPFAIAIGMASAAIVTGNPVIFK 680 Query: 186 PSELASVTCLELADICREVGLPPGVLNVLTGFGSEAGAPLASHPGVDKIAFTGSFATGSK 245 PS ++S LA++ RE GLP GV N G S G L HP + I FTGS G + Sbjct: 681 PSSISSRIGYNLAEVFREAGLPEGVFNYCPGRSSIMGDYLVEHPDISLICFTGSMEVGLR 740 Query: 246 VMTAAAQL------VKPVSMELGGKSPLIVFDDVDLDKAAEWALFGCFWTNGQICSATSR 299 + AA++ K V E+GGK+ I+ DD DLD+A L+ F GQ CSA SR Sbjct: 741 IQEKAAKVQPGQRQCKRVIAEMGGKNATIIDDDADLDEAVLQVLYSAFGFQGQKCSACSR 800 Query: 300 LLVHESIASEFIEKLVKWSKNIKISDPMEEGCRLGPVVSKGQYEKILKFISTAKSEGATI 359 ++V ++I FIE+LVK + +I I + +GPV + + +I A+ EG + Sbjct: 801 VIVLDAIYDRFIERLVKAASSIHIGPSEDPSNYMGPVADATLQKNVSDYIRIAEEEGRVL 860 Query: 360 LHGGSRPEHLEKGFFIEPTIITDVTTSMQIWREEVFGPVLCVKTFASEDEAIELANDSHY 419 L R + +G ++ TI+ D+ +I +EE+FGPVL V A+ DEA+ +AN + + Sbjct: 861 L---KRTDLPAEGCYVPLTIVGDIRPEHRIAQEEIFGPVLAVMRAATFDEALSIANGTRF 917 Query: 420 GLGAAVISNDTERCDRISEAFEAGIVWIN--CSQPCFTQAPWGGVKRSGFGRELGEWGLD 477 L AV S E D+ F G +++N + + P+GG SG G + G G D Sbjct: 918 ALTGAVFSRSPEHLDKARREFRVGNLYLNKGSTGALVERQPFGGFAMSGVGSKTG--GPD 975 Query: 478 NYLSVKQVTLYTSN 491 L + T N Sbjct: 976 YLLQFMDPRVVTEN 989 Lambda K H 0.318 0.135 0.416 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1136 Number of extensions: 43 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 1006 Length adjustment: 39 Effective length of query: 462 Effective length of database: 967 Effective search space: 446754 Effective search space used: 446754 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory