Align D-trehalose PTS system, I, HPr, and IIA components (characterized)
to candidate 206257 DVU0829 phosphoenolpyruvate-protein phosphotransferase
Query= reanno::WCS417:GFF4500 (838 letters) >lcl|MicrobesOnline__882:206257 DVU0829 phosphoenolpyruvate-protein phosphotransferase Length = 590 Score = 325 bits (833), Expect = 5e-93 Identities = 195/524 (37%), Positives = 294/524 (56%), Gaps = 23/524 (4%) Query: 319 ALQVLQDKAAGSAQ--------AEIFRAHQELLEDPTLL-EHAHRLLGEGKSAAFAWNSA 369 A QV D AQ A I +H+ + DP L+ + A R+ + SA +A A Sbjct: 51 AAQVASDLDRARAQVPADLRDHAAIIDSHRMICRDPKLMGDAARRIREQNISAPWALEQA 110 Query: 370 TLATVTLFQGLGNALIAERAADLADVGQRVLKLILGIQDSAWDLPERAILIAEQLTPSQT 429 A F+ + + I ER D+ V +R+L + G ER +L+A LTP+ T Sbjct: 111 VDAIAQAFRAIDDPYIRERVQDVRAVAERILSRLAGNARELKSTGERMVLLAHDLTPADT 170 Query: 430 ASLDTRKVLGFVTVAGGATSHVAILARALGLPAICGVPAQVLALANGKQVLLDADKGELH 489 L +++ F T GG TSH ILAR+L +PA+ GV A A+G V++DA +G + Sbjct: 171 IELQVSRIMSFATAEGGKTSHTGILARSLQIPAVVGVSGLEEATADGDLVIIDALRGRIL 230 Query: 490 LEPN---LAEIEQLEAARKHQVLRHQRDVA-QASLPATTRDGHHVEVTANVASLQEVEHA 545 ++P+ LAE +L K+Q +QR + Q++LPA T DG+ +EV +N+ L+EV Sbjct: 231 IDPDEHELAEYTEL----KYQFESYQRSIRRQSTLPAETLDGYRIEVQSNIELLEEVPQV 286 Query: 546 LTLGGEGVGLLRSEFLYLDRNRAPSPEEQAGTYTAIARALGTERNLVVRTLDVGGDKPLA 605 L G +GVGL R+E+ +L R + PS ++ Y+ +A AL + R +V RTLDVG DK L Sbjct: 287 LDSGADGVGLYRTEYAFLARRQPPSEQDLCDEYSQVA-ALMSPRQVVFRTLDVGADKMLR 345 Query: 606 YVPMDAETNPFLGLRGIRLCLERPQLLREQFRAILASAGFARLHIMLPMVSLLSELHLAR 665 E NP LGLR IR CL + R Q RAIL ++ + ++ PM+S + EL AR Sbjct: 346 EQVRMEEPNPALGLRAIRFCLRHQDVFRTQLRAILRASVHGNVALLFPMISGIQELRQAR 405 Query: 666 KILEE---EALALGLTELPKL--GIMIEVPSAALMADVFAPHVDFFSIGTNDLTQYTLAM 720 IL+E E A G+ P + GIM+E+PSA L+AD A VDFFSIGTNDL QY+L + Sbjct: 406 HILQEVRQELDAEGIPHAPDMPVGIMVELPSAVLIADALAHEVDFFSIGTNDLIQYSLGI 465 Query: 721 DRDHPRLANQADSFHPAVLRLIATTVKAAHAHGKWVGVCGALASEALAVPVLIGLGVDEL 780 DR + ++ HPA++R I V +AH G V VCG +AS+ +P+L+G+ +D + Sbjct: 466 DRGNRHVSYLYQPLHPAIVRSIKLVVDSAHRAGISVSVCGEVASDPFCLPILMGMQIDSI 525 Query: 781 SVSVPLIPTIKATVRELDLADCQIIARQVLGLEEAAEVREALRQ 824 S++ +P IK +R+ ++ +C+ + R VL + + +++ Sbjct: 526 SIAPQAVPGIKHIIRKTNMEECKTLTRDVLNATTVSTINRMVKE 569 Lambda K H 0.318 0.133 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 913 Number of extensions: 34 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 838 Length of database: 590 Length adjustment: 39 Effective length of query: 799 Effective length of database: 551 Effective search space: 440249 Effective search space used: 440249 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory