Align Benzoyl-CoA reductase, putative (characterized, see rationale)
to candidate WP_011385299.1 AMB_RS14710 aldehyde ferredoxin oxidoreductase
Query= uniprot:Q39TV8 (653 letters) >lcl|NCBI__GCF_000009985.1:WP_011385299.1 AMB_RS14710 aldehyde ferredoxin oxidoreductase Length = 616 Score = 173 bits (438), Expect = 2e-47 Identities = 137/422 (32%), Positives = 191/422 (45%), Gaps = 24/422 (5%) Query: 6 TGYVLEVDLTKGSIERVATDPRDTELYLGGLGTNAKILWDRVPPEVEPFSPENLLIFAAG 65 TG L +DLT GS++ + YLG G K + V P+V+P SP N +IF G Sbjct: 4 TGKFLRIDLTNGSVKTEELNRAWARQYLGQRGLATKYFAEEVDPKVDPLSPANKMIFTTG 63 Query: 66 LLCGTPATGCNRTIVSTVSPQTKLMAFSMMGGFWAPELKYAGYDKIIFRGKSPELVYLYI 125 L GT A+ R V T P T +A S GGF+ ELK AG+D II G+SP+ VYL I Sbjct: 64 PLTGTAASTGGRYSVVTKGPLTNCIACSNSGGFFGNELKNAGWDMIIVEGRSPKPVYLSI 123 Query: 126 NNDKVEIRDASHLKGKGAIETAEIIKKELNEPRAQVAAIGKAGENRVFYASIEQG-RSSA 184 N+ VEIRDA+ GK ET +K +P +VA IG AGE V YA I +A Sbjct: 124 ENETVEIRDAAEFWGKTVWETENGLKARHQDPMLRVATIGAAGEKGVLYACIVNDLHRAA 183 Query: 185 SRGGIGAVMGDKGLKAVVVRGTKDLCVAKPEEYIGLCNEVLDYIKHREENPIPDVMPILA 244 R G+GAVMG K LKA+ VRGT+ + V P+ +I ++ K +N + L Sbjct: 184 GRSGVGAVMGSKNLKAIAVRGTRGVTVKDPDRFI---KATIEQKKVLADNAVTG--QGLP 238 Query: 245 GLGSPQEMKVHDEKWHTENFNWGNARTRRKDFWTDEVSHAWEKTMDKARTRLI-SCYNCP 303 G+ M V +E N+ + + E H T KA +C+ C Sbjct: 239 KYGTQVLMNVINEIGAMPTRNFKEVQFEGAHKISAEAMHEPRATDGKANLATNGACFGCT 298 Query: 304 MKCG-------ATISMEGLPTYMMKCFTKLTYTMAAYSDLDFGLRIAQKAT-------EY 349 + CG S+ P Y + + Y A D G+ + T E+ Sbjct: 299 IACGRISRMDPGHFSITSRPQY-KEPSGGVEYEAAWAMGSDCGVDDLEACTFANFMCNEH 357 Query: 350 GLDGFSAPQVMAFAFELLEKGILKDSDFPG--LPEGNEERFFYLLDKIVNRDGIGDILAN 407 G+D S +A A E+ E G++ G L G+ E + + +G G L Sbjct: 358 GIDPISFGSTLAAAMEMFEMGVITKEQTGGVELKFGSAEALVKMAELTGKGEGFGLELGQ 417 Query: 408 GT 409 G+ Sbjct: 418 GS 419 Score = 49.7 bits (117), Expect = 4e-10 Identities = 36/95 (37%), Positives = 46/95 (48%), Gaps = 11/95 (11%) Query: 552 PKFIAAGAGIEMDTEKLKKAAKRYRTLVRAFNIRRGMRRVDEQPPANHWKNRFPE----- 606 P+ AA G E E L + +R TL R FN+ GM D+ P K+ Sbjct: 523 PQIDAACEG-EWTPEILLEVGERIWTLERQFNLAAGMTAADDTLPKRLLKDAAKTGPAKG 581 Query: 607 ----LEKELLDSYYKLKGWNDDGIPTKETLDDLGL 637 LEK +L YY+L+GW DG+PT ETL L L Sbjct: 582 LTSGLEK-MLPEYYQLRGWTTDGVPTTETLKRLQL 615 Lambda K H 0.319 0.138 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 904 Number of extensions: 46 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 653 Length of database: 616 Length adjustment: 38 Effective length of query: 615 Effective length of database: 578 Effective search space: 355470 Effective search space used: 355470 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory