Align Probable D-lactate dehydrogenase, mitochondrial; DLD; Lactate dehydrogenase D; EC 1.1.2.4 (characterized)
to candidate WP_011385361.1 AMB_RS15030 FAD-binding protein
Query= SwissProt::F1QXM5 (497 letters) >lcl|NCBI__GCF_000009985.1:WP_011385361.1 AMB_RS15030 FAD-binding protein Length = 457 Score = 518 bits (1334), Expect = e-151 Identities = 252/443 (56%), Positives = 324/443 (73%), Gaps = 4/443 (0%) Query: 46 EGVSVGSAVREQHGRDESVHRCRPPDVVVFPRSVEEVSALAKICHHYRLPIIPFGTGTGL 105 E S AVREQHG+DES PP+ VVF +S EEV+ K C + P+I FGTGT L Sbjct: 17 ERFSTAQAVREQHGKDESHFPACPPEAVVFAQSTEEVAETVKACAAHGTPVIAFGTGTSL 76 Query: 106 EGGVGALQGGVCFSLRKMEQVVDLHQEDFDVTVEPGVTRKSLNSYLRDTGLWFPVDPGAD 165 EG V AL+GGVC + M +V+++ ED DVTV+PGVTRK LN YLRDTGL+FP+DPGAD Sbjct: 77 EGHVAALKGGVCIDVSGMNRVLEVRAEDLDVTVQPGVTRKQLNEYLRDTGLFFPIDPGAD 136 Query: 166 ASLCGMAATSASGTNAVRYGTMRENVLNLEVVLADGTILHTAGKGRRPRKTAAGYNLTNL 225 ASL GMAAT ASGTNAVRYGTMRENVL+L+VVL DG ++ TAG R RK++AGY+LT L Sbjct: 137 ASLGGMAATRASGTNAVRYGTMRENVLSLQVVLPDGRVIRTAG---RARKSSAGYDLTRL 193 Query: 226 FVGSEGTLGIITKATLRLYGVPESMVSAVCSFPSVQSAVDSTVQILQAGVPIARIEFLDD 285 FVGSEGTLGIIT+ TLRL G+PE++ +AVC FPS+++AV++ + +Q+GVP+ARIEFLD Sbjct: 194 FVGSEGTLGIITELTLRLQGIPEAISAAVCPFPSIEAAVNTVILTIQSGVPVARIEFLDK 253 Query: 286 VMINACNRFNNLSYAVTPTLFLEFHGSSKSMEEQVSVTEEITRDNGGSDFAWAEDEETRS 345 VMI A NR++ + PTLF EFHGS S++EQ E I + G F WA E R+ Sbjct: 254 VMIGAVNRYSKTDHREAPTLFFEFHGSPASVQEQAEKVEAIATEFGAEGFQWATGAEERT 313 Query: 346 RLWKARHDAWYAAMALRPGCKAYSTDVCVPISRLPQIIVETKADLISNNITGPIAGHVGD 405 +LW ARH+A+YA + LRPGC+A++TD CVPISRL + ++ET+ DL + + I GHVGD Sbjct: 314 KLWAARHNAYYAGVGLRPGCRAWTTDACVPISRLAECLLETEEDLKTTPLISAIVGHVGD 373 Query: 406 GNFHCLIVLDPNDTDEVQRVHSFTERLARRALAMDGTCTGEHGIGLGKRALLREEVGPLA 465 GNFH ++++DP +E R+ RRALAMDGTCTGEHG+G GK A L EE G A Sbjct: 374 GNFHVMLLVDPGKPEEAAEAERINHRIVRRALAMDGTCTGEHGVGHGKMAFLEEEYGE-A 432 Query: 466 IEVMKGLKASLDPRNLMNPGKVL 488 ++VM+ +K ++DP +MNPGK++ Sbjct: 433 LDVMRAVKRAIDPAGIMNPGKIV 455 Lambda K H 0.319 0.135 0.399 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 604 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 457 Length adjustment: 33 Effective length of query: 464 Effective length of database: 424 Effective search space: 196736 Effective search space used: 196736 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory