GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Magnetospirillum magneticum AMB-1

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate WP_011384532.1 AMB_RS10775 CoA transferase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>NCBI__GCF_000009985.1:WP_011384532.1
          Length = 402

 Score =  235 bits (600), Expect = 2e-66
 Identities = 145/405 (35%), Positives = 210/405 (51%), Gaps = 12/405 (2%)

Query: 4   LSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTTEA 63
           L  +RVLD++  +A P+A  IL + GA+VIKVE+PG GD  R +G    +D       ++
Sbjct: 8   LDGIRVLDIATFIAAPYAAAILGEFGAEVIKVEQPGGGDTFRRFGSITERDG------DS 61

Query: 64  AYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKAINP 123
             +LS  RNK SVT+D  +PEG+ L  +L A++D++ ENF+ G L  +GL ++ L+ +NP
Sbjct: 62  LMWLSEARNKNSVTLDLRKPEGRELFLKLVARTDVIAENFRPGTLEKWGLGWEELRRVNP 121

Query: 124 QLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVG-VALTDILT 182
            LI   I+G+GQTGPY  R G+  +    GGL  L G P    G  PV  G  +L D ++
Sbjct: 122 GLILLRISGYGQTGPYKDRPGFARIAHAFGGLSYLAGMP----GDVPVTPGSTSLADYMS 177

Query: 183 GLYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHPNI 242
           GLY    +L AL HRD  G GQ ID+AL +     L   A  +   G   +R G    N 
Sbjct: 178 GLYGAIGVLLALRHRDATGEGQVIDLALYESVFRALDEIAPAFAMFGKVREREGAGTVNA 237

Query: 243 VPYQDFPTADGDFI-LTVGNDGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLIR 301
            P+  F   DG ++ L    D  F + AE   +P+ AD  ++   + R+A RA +  L+ 
Sbjct: 238 CPHGHFRCGDGKWVALACTTDRMFARLAEAMERPELADGAKWGLLRNRLAERADVDALVG 297

Query: 302 QATVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMELPHLLAGKVPQVASP 361
                +     +       VP  P+N +A +F DPQ QARG  +E+   + G V      
Sbjct: 298 HWAATRPRETVMELCLDFEVPAAPLNTIADIFEDPQFQARGNLLEVADAVLGGVVVPGVV 357

Query: 362 IRLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
            +LS TP    +  P LGE    V   +LGL EA +   +  GV+
Sbjct: 358 PKLSATPGRVDHLGPRLGEDNARVYGGLLGLGEAEIAELKSKGVI 402


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 456
Number of extensions: 25
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 402
Length adjustment: 31
Effective length of query: 375
Effective length of database: 371
Effective search space:   139125
Effective search space used:   139125
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory