Align C4-dicarboxylic acid transporter DauA; Dicarboxylic acid uptake system A (characterized)
to candidate WP_011386051.1 AMB_RS18695 sodium-independent anion transporter
Query= SwissProt::P0AFR2 (559 letters) >NCBI__GCF_000009985.1:WP_011386051.1 Length = 569 Score = 411 bits (1057), Expect = e-119 Identities = 239/559 (42%), Positives = 335/559 (59%), Gaps = 43/559 (7%) Query: 19 CWKEKYTAARFTRDLIAGITVGIIAIPLAMALAIGSGVAPQYGLYTAAVAGIVIALTGGS 78 C KE Y R DLIAG+TV I+A+PLAMAL I SGV P GL+TA VAG +I+ GGS Sbjct: 23 CLKEGYDLPRGRGDLIAGLTVAIVALPLAMALGIASGVTPDRGLFTAIVAGFLISFLGGS 82 Query: 79 RFSVSGPTAAFVVILYPVSQQFGLAGLLVATLLSGIFLILMGLARFGRLIEYIPVSVTLG 138 RF + GPT AFVV++Y + QQ G GL++ATL++G+ L+L GLARFG +I+YIP + G Sbjct: 83 RFQIGGPTGAFVVVVYNIVQQHGYDGLVLATLMAGVMLLLFGLARFGVVIKYIPYPLVTG 142 Query: 139 FTSGIGITIGTMQIKDFLGLQMAHVPEHYLQKVGALFMALPTINVGDAAIGIVTLGILVF 198 FTSGI + I + Q+KDFLGL+M VP + +K A + T + A+ TL +++ Sbjct: 143 FTSGIAVIIFSSQVKDFLGLRMESVPAEFFEKWVAYGEHIGTTHGPTLAVAAGTLAVILV 202 Query: 199 WPRLGIRLPGHLPALLAGCAVMGIVNLLGGHVATIGSQFHYVLADGSQGNGIPQLLPQLV 258 R PG L + G +V +V LG V TIGS+F GIP LP Sbjct: 203 LRRFRPGWPGFLIG-VTGASV--LVWALGMPVETIGSRF----------GGIPSTLPSPQ 249 Query: 259 LPWDLPNSEFTLTWDSIRTLLPAAFSMAMLGAIESLLCAVVLDGMTGTKHKANSELVGQG 318 P L+W + LL AF++A L IESLL A+V DGMTG +HK+N EL+ QG Sbjct: 250 FP--------ALSWGKVTALLQPAFTIAFLAGIESLLSAMVADGMTGRRHKSNCELLAQG 301 Query: 319 LGNIIAPFFGGITATAAIARSAANVRAGATSPISAVIHSILVILALLVLAPLLSWLPLSA 378 + NI + FGGI AT AIAR+A ++++GA +P++ ++H++ ++L +L+ APL SW+PL + Sbjct: 302 IANIASVLFGGIPATGAIARTATSIKSGAQTPVAGMLHAVFILLFMLLFAPLASWIPLPS 361 Query: 379 MAALLLMVAWNMSEAHKVVDLLRHAPKDDIIVMLLCMSLTVLFDMVIAISVGIVLASLLF 438 +AA+L++VAWNMSEA + L+ AP+ D V+L+ LTV+ D+ +AI VG+VLAS+LF Sbjct: 362 LAAVLMVVAWNMSEAPHFIHLM-SAPRSDRAVLLVTFVLTVMVDLTVAIEVGMVLASILF 420 Query: 439 MRRIARMTRL--------------------APVVVDVPDDVLVLRVIGPLFFAAAEGLFT 478 MRR+A +T + A +PD V V ++ GP FF A L Sbjct: 421 MRRMAEVTEIGTGIHLIDEDAEDGGDDHVGAIPTTPIPDGVEVFQISGPFFFGVATRLSE 480 Query: 479 DLESRLEGKRIVILKWDAVPVLDAGGLDAFQRFVKRL-PEGCELRVCNVEFQPLRTMARA 537 E + R+ IL+ VPV+DA G+ A FV+R G E+ + V+ QP++ M R Sbjct: 481 VFEQTHKPPRVFILRMRLVPVIDASGIQALTEFVRRCRKHGTEVLLSGVQPQPMQVMGRM 540 Query: 538 GIQPIPGRLAFFPNRRAAM 556 G+ G F PN AA+ Sbjct: 541 GLCHEIGEDNFVPNIDAAL 559 Lambda K H 0.328 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 748 Number of extensions: 37 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 569 Length adjustment: 36 Effective length of query: 523 Effective length of database: 533 Effective search space: 278759 Effective search space used: 278759 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory