Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate WP_011383257.1 AMB_RS04160 NAD-dependent succinate-semialdehyde dehydrogenase
Query= curated2:Q1QTQ7 (489 letters) >lcl|NCBI__GCF_000009985.1:WP_011383257.1 AMB_RS04160 NAD-dependent succinate-semialdehyde dehydrogenase Length = 499 Score = 203 bits (516), Expect = 1e-56 Identities = 156/471 (33%), Positives = 226/471 (47%), Gaps = 20/471 (4%) Query: 4 KQQLLIDGAWVDGD-AARFAKTDPVSGETLWTATAASATQVEHAVAAARQAFPDWARRSF 62 K +DG WV D RF DP +G + + AT+ A+ AA A+ W +R+ Sbjct: 24 KSHAYVDGVWVGADDGRRFDVLDPATGGLIASVPDLGATETRRAIDAAEAAWNPWRQRTA 83 Query: 63 AERQAVVERFRECLETHREHLATAIAQETGKPLWEARTEVGAMIGKVAISITAYHERTGE 122 +R AV+ + + + H++ LA ++ E GKPL EA E+ S ++ G+ Sbjct: 84 KDRAAVMMAWHDLIMAHQDALARLLSAEQGKPLAEAMGEIS-----YGASFISWFAEEGK 138 Query: 123 RA------RDIGDARAVLRHRPHGVLAVYGPYNFPGHLPNGHIVPALLAGNAVVFKPSEQ 176 RA D R ++ +P GV+A P+NFP + PAL AG VV KP+E Sbjct: 139 RAYGDLIPTTASDRRLLVMKQPIGVVAAVTPWNFPMAMITRKCAPALAAGCPVVVKPAED 198 Query: 177 TPMTADLTLQCWLEAGLPAGVINLV--QGAAEVGQALAGSADIDGLLFTGSAKVGGLLHR 234 TP++A + AGLP G+ N+V + A VG + G+A + L FTGS +VG LL Sbjct: 199 TPLSALALAELAHRAGLPKGLFNIVTTRQPAAVGGEMTGNAKVRKLSFTGSTRVGKLLMA 258 Query: 235 QFGGQVDKILALELGGNNPLVVKDVPDREAAVLSILQSAFASGGQRCTCARRLIVPHGAV 294 Q V K+ +LELGGN P +V D D +AAV L S + + GQ C C R +V G + Sbjct: 259 QCAETVKKV-SLELGGNAPFIVFDDCDLDAAVAGALASKYRNSGQTCICTNRFLVQAG-I 316 Query: 295 GDDLIDALTSAIAELRVAAPFSEPAPFYAGLTSVEAADGLLAAQDDLVARGGRPLSRMRR 354 +D L A + V S L + A + A D V++G R L+ R Sbjct: 317 YEDFAVKLAEKAAAMAVGHALSGVVQ-QGPLINAAAVAKVAAHVADAVSKGARVLTGGRP 375 Query: 355 LQAGTSLLSPG-LIDVTGCDVP-DEEHFGPLLKVHRYRDWDEAIALANDTRYGLSAGLIG 412 G P L DVT + EE FGP+ + R+ EAIALAN + +GL+ Sbjct: 376 HALGGGFWQPTVLADVTPAMLCFREETFGPVAPLLRFETEAEAIALANASEFGLAGYFYS 435 Query: 413 GERADWDDFLLRIRAGIVNWNRQTTGASSDAPFGGIGDSGNHRPSAYYAAD 463 + A + G+V N ++ ++ APFGGI +SG R + Y D Sbjct: 436 RDVARVFRVAEALECGMVGVN-ESLISNEVAPFGGIKESGLGREGSKYGLD 485 Lambda K H 0.319 0.135 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 615 Number of extensions: 31 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 489 Length of database: 499 Length adjustment: 34 Effective length of query: 455 Effective length of database: 465 Effective search space: 211575 Effective search space used: 211575 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory