Align succinate-semialdehyde dehydrogenase (NAD+) (EC 1.2.1.24) (characterized)
to candidate WP_011385953.1 AMB_RS18195 DUF1487 domain-containing protein
Query= BRENDA::B0JFD4 (507 letters) >lcl|NCBI__GCF_000009985.1:WP_011385953.1 AMB_RS18195 DUF1487 domain-containing protein Length = 496 Score = 288 bits (736), Expect = 4e-82 Identities = 169/490 (34%), Positives = 280/490 (57%), Gaps = 11/490 (2%) Query: 22 MSSLLCSKALIDGKWVSALSGDTFEVKNPANGKVIGSVPNMNEKDAQMAITAARNAFYSE 81 ++ L K LI GK V A G+ FEV NPA G++IG+ ++D +A+ +A+ A + Sbjct: 12 LAKALSGKHLIGGKLVPAGCGEVFEVDNPATGEIIGTAAFGTKEDVDIAVISAKAA--QK 69 Query: 82 EWTSLTAKQRSQLLKNWYHLIEKHTQEIAEIMTAESGKPI-IESKAEVFYGNAFMEWFAE 140 +W +A+ R +L+ ++ H +E+ ++ E+GK + ES+ E +F Sbjct: 70 DWAKQSARARGKLVAECGRVLSAHVEELGRLVALETGKALRTESRVEAGVLADMFTFFGG 129 Query: 141 EARRIYGEIVPTPVPNRELIVMKQPLGVAALITPWNFPLAMITRKAGAALAAGCTVVIKP 200 + GE +P P+ + +++P+GV I PWN PL ++ KA AAL AG +VV+K Sbjct: 130 LGSELKGETIPFN-PDMLTVTVREPVGVVGCIIPWNVPLLLMAMKAAAALVAGNSVVVKS 188 Query: 201 AEDTPFTALAVAKLAEEAGIPKGVVNVVTSNKAPPIGELFCKSPDVQGISFTGSTEVGKI 260 AE+ P T L VA++ +P G+ N++ S P G + PDV+ ++FTGS E G+I Sbjct: 189 AEEAPLTVLRVAEIMNTV-LPPGLFNML-SGFGPECGAPLVEHPDVKKVTFTGSVETGRI 246 Query: 261 LFRQSADGIKRVSLELGGNAPFIVFDSANLEKAVDGAMAS-KFRNCGQTCVSSNRFFVQE 319 +++ +A+ + V+LELGG +P IV A++++AV GA+A +F GQ+C +S+R FV E Sbjct: 247 VYKAAAEKLIPVTLELGGKSPMIVCADADMDQAVAGALAGMRFTRQGQSCTASSRLFVHE 306 Query: 320 GIYDKFVAALKERVEALKIGPGDKDTTQVGPLVNAMQFNKVSGFVE-DARSKNA-EILCG 377 I+D+FVA +K +V+A+ +G + T +G +V+ Q +V +++ +K A + +C Sbjct: 307 SIHDEFVAKVKAKVDAMVMGDPLDEKTDIGTIVSDGQLERVRSYIKIGEETKGATKHVCS 366 Query: 378 GKPL--KELGDLFYAPTVVTNIPPNAKIYTEEVFGPVVSIIKFSTEEEALAKANESRRGL 435 P K F P + T + + ++ EE+FGPV ++IK+S E+ LA+AN+S GL Sbjct: 367 ALPTDPKLAKGRFVQPVIFTGMKNSDRLCQEEIFGPVCAVIKWSDYEDVLAQANDSEYGL 426 Query: 436 AGYFYSDNIQQIFRVAKRLEVGMVGVNEGLISAAEAPFGGIKESGIGREGSHHGIDEYTE 495 A ++ + + KRLE G V VN+ L+ +GG+K SGIG+E S + E+ Sbjct: 427 AASIWTRDFKLAMDATKRLEAGFVQVNQNLVVQPGLSYGGVKTSGIGKEASLESMLEHFT 486 Query: 496 VKYICIGNLK 505 K I N+K Sbjct: 487 HKKTIIFNMK 496 Lambda K H 0.317 0.134 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 550 Number of extensions: 36 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 507 Length of database: 496 Length adjustment: 34 Effective length of query: 473 Effective length of database: 462 Effective search space: 218526 Effective search space used: 218526 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory