Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate WP_011383257.1 AMB_RS04160 NAD-dependent succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >lcl|NCBI__GCF_000009985.1:WP_011383257.1 AMB_RS04160 NAD-dependent succinate-semialdehyde dehydrogenase Length = 499 Score = 341 bits (874), Expect = 4e-98 Identities = 193/483 (39%), Positives = 273/483 (56%), Gaps = 6/483 (1%) Query: 2 ANVTYTDTQLL-----IDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQ 56 A VT D L+ +DG WV A G+ DV++PATG I V G + RA+ AA+ Sbjct: 13 AAVTDLDPSLIKSHAYVDGVWVGADDGRRFDVLDPATGGLIASVPDLGATETRRAIDAAE 72 Query: 57 SGFEAWRKVPAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEW 116 + + WR+ A +RAA M L+ DA+A+L++ EQGKPL EA E+ A I W Sbjct: 73 AAWNPWRQRTAKDRAAVMMAWHDLIMAHQDALARLLSAEQGKPLAEAMGEISYGASFISW 132 Query: 117 FADEGRRVYGRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFL 176 FA+EG+R YG ++P + V+K+P+G VAA TPWNFP+ + RK + ALA GC + Sbjct: 133 FAEEGKRAYGDLIPTTASDRRLLVMKQPIGVVAAVTPWNFPMAMITRKCAPALAAGCPVV 192 Query: 177 VKAPEETPASPAALLRAFVDAGVPAGVIGLVYG-DPAEISSYLIPHPVIRKVTFTGSTPV 235 VK E+TP S AL AG+P G+ +V PA + + + +RK++FTGST V Sbjct: 193 VKPAEDTPLSALALAELAHRAGLPKGLFNIVTTRQPAAVGGEMTGNAKVRKLSFTGSTRV 252 Query: 236 GKQLASLAGLHMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLV 295 GK L + +K+ ++ELGG+AP IV +D D+ AV A +K+RN+GQ CI RFLV Sbjct: 253 GKLLMAQCAETVKKVSLELGGNAPFIVFDDCDLDAAVAGALASKYRNSGQTCICTNRFLV 312 Query: 296 HNSIRDEFTRALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETG 355 I ++F L + A + VG+ L G L N + +A+ + +A GA + TG Sbjct: 313 QAGIYEDFAVKLAEKAAAMAVGHALSGVVQQGPLINAAAVAKVAAHVADAVSKGARVLTG 372 Query: 356 GERIGSEGNFFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGY 415 G G F+ PTV+A+V F E FGPVA + F+ EAIA AN FGLAGY Sbjct: 373 GRPHALGGGFWQPTVLADVTPAMLCFREETFGPVAPLLRFETEAEAIALANASEFGLAGY 432 Query: 416 AFTRSFANVHLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKS 475 ++R A V + + LE GM+ +N+ PFGG+K+SG G EG L+ ++ TK Sbjct: 433 FYSRDVARVFRVAEALECGMVGVNESLISNEVAPFGGIKESGLGREGSKYGLDDFMETKY 492 Query: 476 VTV 478 V + Sbjct: 493 VCI 495 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 650 Number of extensions: 30 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 499 Length adjustment: 34 Effective length of query: 447 Effective length of database: 465 Effective search space: 207855 Effective search space used: 207855 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory