Align mannose-1-phosphate guanylyltransferase (EC 2.7.7.13) (characterized)
to candidate WP_011382484.1 AMB_RS00190 mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase
Query= BRENDA::P07874 (481 letters) >lcl|NCBI__GCF_000009985.1:WP_011382484.1 AMB_RS00190 mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase Length = 464 Score = 484 bits (1247), Expect = e-141 Identities = 241/468 (51%), Positives = 317/468 (67%), Gaps = 7/468 (1%) Query: 1 MIPVILSGGSGSRLWPLSRKQYPKQFLALTGDDTLFQQTIKRLAFDGMQAPLLVCNKEHR 60 +IPVILSGG+G+RLWPLSR+ PKQ L LTG+ TL Q T RL P++VCN EHR Sbjct: 4 LIPVILSGGAGTRLWPLSRELMPKQLLKLTGERTLLQDTAGRLGVP----PVVVCNVEHR 59 Query: 61 FIVQEQLEAQNLASQAILLEPFGRNTAPAVAIAAMKLVAEGRDELLLILPADHVIEDQRA 120 FIV EQL L +A+++EP GRNTAPA A+AA+ L D L+L++P+DH+I D A Sbjct: 60 FIVAEQLREVGLEPRAVVIEPVGRNTAPAAAVAALMLADSDPDALMLLMPSDHLIADVPA 119 Query: 121 FQQALALATNAAEKGEMVLFGIPASRPETGYGYIRASADAQLPEGVSRVQSFVEKPDEAR 180 F +AL A AE G +V FGIP + P TGYGYI+ + +G V+ FVEKPD A Sbjct: 120 FHRALEAAVPLAEAGRLVTFGIPPTNPNTGYGYIKRG---KALDGGFEVERFVEKPDLAT 176 Query: 181 AREFVAAGGYYWNSGMFLFRASRYLEELKKHDADIYDTCLLALERSQHDGDLVNIDAATF 240 A +VA+G Y WNSG+FL +L+EL +H + ++C AL++ + D +D F Sbjct: 177 AETYVASGDYTWNSGIFLLPVRLFLDELSRHAPGMAESCKAALDQGRSDLFFFRLDDKAF 236 Query: 241 ECCPDNSIDYAVMEKTSRACVVPLSAGWNDVGSWSSIWDVHAKDANGNVTKGDVLVHDSH 300 SIDYAVMEK+ + VVP+ GW+D+GSWS++W + DA+GN +GDVL +S Sbjct: 237 AAIAGQSIDYAVMEKSDKVAVVPVDMGWSDIGSWSALWQETSHDADGNAIQGDVLALESS 296 Query: 301 NCLVHGNGKLVSVIGLEDIVVVETKDAMMIAHKDRVQDVKHVVKDLDAQGRSETQNHCEV 360 C + G+LV+ +GL+D+VV+ T DA+++A K R Q+VK VV+ L +GR E Sbjct: 297 GCYLRSQGRLVAAVGLKDMVVIATDDAVLVADKARDQEVKAVVEALKREGRPEATQGTRG 356 Query: 361 YRPWGSYDSVDMGGRFQVKHITVKPGARLSLQMHHHRAEHWIVVSGTAQVTCDDKTFLLT 420 +RPWG Y +V+ G RF+VKHI V PGA+LSLQ H HR+EHW+VV GTA VTC D TF+L Sbjct: 357 WRPWGWYQTVEQGERFKVKHIHVDPGAKLSLQKHWHRSEHWVVVRGTALVTCGDNTFVLR 416 Query: 421 ENQSTYIPIASVHRLANPGKIPLEIIEVQSGSYLGEDDIERLEDVYGR 468 EN+ST+IP S HRL NPGK+PL +IEVQSG Y+GEDDI R+ED YGR Sbjct: 417 ENESTFIPAGSNHRLENPGKVPLRLIEVQSGEYVGEDDIVRIEDDYGR 464 Lambda K H 0.319 0.134 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 630 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 464 Length adjustment: 33 Effective length of query: 448 Effective length of database: 431 Effective search space: 193088 Effective search space used: 193088 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory