Align 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase; EC 1.2.1.77 (characterized)
to candidate WP_011382620.1 AMB_RS00880 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase
Query= SwissProt::Q84HH8 (515 letters) >lcl|NCBI__GCF_000009985.1:WP_011382620.1 AMB_RS00880 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase Length = 515 Score = 508 bits (1309), Expect = e-148 Identities = 263/479 (54%), Positives = 331/479 (69%), Gaps = 8/479 (1%) Query: 1 MKLANYVYGQWIEGAGEGAALTDPVTGEALVRVSSDGIDVARALEFARTAGGAALKALTY 60 ++L +Y+ G+W +GAG GA L DPV+GE L S DG+D+A AL FAR GG AL+AL++ Sbjct: 2 IRLQSYLAGRWQDGAGSGAQLKDPVSGEVLATASGDGLDIAEALAFARDRGGPALRALSF 61 Query: 61 EERAAKLAAIAELLQAKRAEYFDISLRNSGATEGDASFDVDGAIFTVKSYARAGKALGAG 120 RA + A+A +L R Y ++L NSG T DA DVDG I T+K YA G+ LG Sbjct: 62 AGRAGLINALAGVLAENRERYNTVALANSGNTAVDAGLDVDGGIGTLKYYASIGRKLGEA 121 Query: 121 RHLKEGGRVALAKTDVFQGQHFLMPLTGVAVFINAFNFPAWGLWEKAAPALLAGVPVFAK 180 R L E L K + F+G+H GVAV INAFNFP+WGLWEKAA +LLAGVP AK Sbjct: 122 RLLAEATDDQLTKDEAFRGRHIWTSNRGVAVHINAFNFPSWGLWEKAAVSLLAGVPFLAK 181 Query: 181 PATPTAWLAQRMVADVVEAGILPPGAISIVCGGARDLLDHVTECDVVSFTGSADTAARMR 240 PAT T+WLA MV DVV AG+LP GA+S++CGG RDL+DH+ DVV+FTGSA+TAA++R Sbjct: 182 PATATSWLAYEMVKDVVAAGVLPEGAMSLLCGGGRDLMDHLKPGDVVAFTGSAETAAQLR 241 Query: 241 THPNVVARSVRINIEADSVNSAILGPDAQPGTPEFDLAVKEIVREMTVKTGQKCTAIRRI 300 ++PNV+A +VR +EADS+N LGPDA P PEF +KE+ REMTVK GQKCTAIRR+ Sbjct: 242 SNPNVIAANVRFAVEADSLNLCALGPDAAPDAPEFAAFIKEVSREMTVKAGQKCTAIRRV 301 Query: 301 LAPAGVSRALADAVSGKLAGCKVGNPRSEGVRVGPLVSKAQQAAAFEGLAKLRQECEVVF 360 L P + A+ LA +G+PR+EGVR+GPLVS+AQ AA+ GL L+ E +VV Sbjct: 302 LVPRSRVDDVVAALKPALAKALMGDPRTEGVRMGPLVSRAQTVAAWAGLEALKAETQVVA 361 Query: 361 GGDPDFEPVDADAAVSAFVQPTLLYCDKGLAARHVHDVEVFGPVATMVPYADTRDAVAIA 420 GG D FV TLL C+ LAAR VH++EVFGPVAT++PY AV +A Sbjct: 362 GGGND--------DGGCFVPATLLLCNDPLAARAVHEIEVFGPVATLMPYDSVEQAVDLA 413 Query: 421 RRGHGSLVASVYSGDAAFLGELVPGIADLHGRVMVVDAAVGANHTGHGNVMPTCLHGGP 479 +G GSL ASV+SGDAAFL VP IA HGRV+VVD++V A+H+GHG VMP C+HGGP Sbjct: 414 HKGGGSLAASVFSGDAAFLAGFVPAIATSHGRVLVVDSSVAASHSGHGVVMPHCIHGGP 472 Lambda K H 0.319 0.135 0.399 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 724 Number of extensions: 36 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 515 Length adjustment: 35 Effective length of query: 480 Effective length of database: 480 Effective search space: 230400 Effective search space used: 230400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory