Align 3-hydroxyacyl-CoA dehydrogenase PaaC (EC 1.1.1.-) (characterized)
to candidate WP_011384977.1 AMB_RS13065 3-hydroxyacyl-CoA dehydrogenase
Query= reanno::Marino:GFF2749 (506 letters) >lcl|NCBI__GCF_000009985.1:WP_011384977.1 AMB_RS13065 3-hydroxyacyl-CoA dehydrogenase Length = 506 Score = 312 bits (800), Expect = 2e-89 Identities = 190/491 (38%), Positives = 269/491 (54%), Gaps = 9/491 (1%) Query: 10 VAVVGAGAMGSGIAQVAAQAGHQVYLHDQREGAAEAGRDGIAKQLQRRVDKGKMQQQELD 69 + +VG+G MG GIAQ+A +G V L D GAA RD ++ L + +KGK+ + Sbjct: 12 LGLVGSGTMGRGIAQIAVASGVTVILVDALPGAAAKARDAVSAMLAKLAEKGKLTAEACA 71 Query: 70 DVIGRIHPVAKLDDVADAGLVIEAIIEDLQIKRQLLASLEDLCTADAILATNTSSISVTA 129 R+ L D+A +V+EAI+ED+++K+ L+ LE + + D ++A+NTSS+SVT+ Sbjct: 72 SATARLKLGESLADLAPCHVVVEAIVEDIKVKQALMKDLEAIVSKDCLIASNTSSLSVTS 131 Query: 130 LGADMSKPERLVGMHFFNPAPLMALVEVVMGLATSKTVADTVHATATAWGKKPVYATSTP 189 + A P+R+ G HFFNP PLM +VEV+ G+ T+ V +T+ A A G PV A TP Sbjct: 132 IAAACQHPQRVGGFHFFNPVPLMKVVEVIDGVMTAPWVVETLTALARRMGHTPVKAKDTP 191 Query: 190 GFIVNRVARPFYAESLRLLQEQATDAATLDAIIREAGQFRMGAFELTDLIGHDVNYAVTS 249 GF+VN R + E+L+L+ E TD T D I++ A FRMG FEL DL DV++ V Sbjct: 192 GFVVNHAGRGYGTEALKLVGEGVTDFFTADRILKGAAGFRMGPFELLDLTALDVSHPVME 251 Query: 250 SVFNSYYQDPRFLPSLIQKELVEAGRLGRKSGQGFYPY--GESAEKPQPKTEPAHQSDES 307 S+++ YYQ+PRF PS I + + AG LGRK+G+GFY Y ++ P P A Q Sbjct: 252 SIYDQYYQEPRFRPSPITRSRLVAGLLGRKTGRGFYAYEGDKAVVPPAPPVPAAWQGPVW 311 Query: 308 VIIAEGNPGVAAPLLERLKAAGLTIIERDGPGQIRFGDAVLALTDGRMATERAACEGVAN 367 V EG+ VAA L+ +L G ++ + PG+ + D A R + A Sbjct: 312 VAPGEGSLAVAA-LVTKL---GASLETGEKPGETALILIPVLGEDCTTAVVRLGLD-AAR 366 Query: 368 LVLFDLAFDYSKASRLALAPADQASDAAVSCACALLQKAGIEVSLIADRPGLVIMRTVAM 427 V D F + P +A A LL + VS+IAD PGLV R VA Sbjct: 367 SVAIDPLFGLDSHRTVMTNPVTRAE--IRDGAHGLLAGDEVAVSVIADSPGLVAQRVVAT 424 Query: 428 LANEAADAALHGVATVADIDLAMKAGLNYPDGPLSWSDRLGAGHVFKVLTNIQTSYAEDR 487 + N D A +AT DID A+ GL YP GPLSW DR+GA V +L + + R Sbjct: 425 IVNIGCDIAQQRIATPDDIDKAVTLGLGYPAGPLSWGDRIGAAKVVAILDTVLAITGDPR 484 Query: 488 YRPALLLRKNA 498 YR +L L++ A Sbjct: 485 YRASLWLKRRA 495 Lambda K H 0.318 0.133 0.375 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 584 Number of extensions: 30 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 506 Length adjustment: 34 Effective length of query: 472 Effective length of database: 472 Effective search space: 222784 Effective search space used: 222784 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory