Align oxepin-CoA hydrolase (EC 3.3.2.12) (characterized)
to candidate WP_011382620.1 AMB_RS00880 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase
Query= BRENDA::P77455 (681 letters) >lcl|NCBI__GCF_000009985.1:WP_011382620.1 AMB_RS00880 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase Length = 515 Score = 466 bits (1199), Expect = e-135 Identities = 248/512 (48%), Positives = 329/512 (64%), Gaps = 5/512 (0%) Query: 1 MQQLASFLSGTWQSGRGRSRLIHHAISGEALWEVTSEGLDMAAARQFAIEKGAPALRAMT 60 M +L S+L+G WQ G G + +SGE L + +GLD+A A FA ++G PALRA++ Sbjct: 1 MIRLQSYLAGRWQDGAGSGAQLKDPVSGEVLATASGDGLDIAEALAFARDRGGPALRALS 60 Query: 61 FIERAAMLKAVAKHLLSEKERFYALS-AQTGATRADSWVDIEGGIGTLFTYASLGSRELP 119 F RA ++ A+A L +ER+ ++ A +G T D+ +D++GGIGTL YAS+G R+L Sbjct: 61 FAGRAGLINALAGVLAENRERYNTVALANSGNTAVDAGLDVDGGIGTLKYYASIG-RKLG 119 Query: 120 DDTLWPEDELIPLSKEGGFAARHLLTSKSGVAVHINAFNFPCWGMLEKLAPTWLGGMPAI 179 + L E L+K+ F RH+ TS GVAVHINAFNFP WG+ EK A + L G+P + Sbjct: 120 EARLLAEATDDQLTKDEAFRGRHIWTSNRGVAVHINAFNFPSWGLWEKAAVSLLAGVPFL 179 Query: 180 IKPATATAQLTQAMVKSIVDSGLVPEGAISLICGSAGDLLDHLDSQDVVTFTGSAATGQM 239 KPATAT+ L MVK +V +G++PEGA+SL+CG DL+DHL DVV FTGSA T Sbjct: 180 AKPATATSWLAYEMVKDVVAAGVLPEGAMSLLCGGGRDLMDHLKPGDVVAFTGSAETAAQ 239 Query: 240 LRVQPNIVAKSIPFTMEADSLNCCVLGEDVTPDQPEFALFIREVVREMTTKAGQKCTAIR 299 LR PN++A ++ F +EADSLN C LG D PD PEFA FI+EV REMT KAGQKCTAIR Sbjct: 240 LRSNPNVIAANVRFAVEADSLNLCALGPDAAPDAPEFAAFIKEVSREMTVKAGQKCTAIR 299 Query: 300 RIIVPQALVNAVSDALVARLQKVVVGDPAQEGVKMGALVNAEQRADVQEKVNILLAAGCE 359 R++VP++ V+ V AL L K ++GDP EGV+MG LV+ Q + L A Sbjct: 300 RVLVPRSRVDDVVAALKPALAKALMGDPRTEGVRMGPLVSRAQTVAAWAGLEALKAETQV 359 Query: 360 IRLGGQADLSAAGAFFPPTLLYCPQPDETPAVHATEAFGPVATLMPAQNQRHALQLACAG 419 + GG D G F P TLL C P AVH E FGPVATLMP + A+ LA G Sbjct: 360 VAGGGNDD---GGCFVPATLLLCNDPLAARAVHEIEVFGPVATLMPYDSVEQAVDLAHKG 416 Query: 420 GGSLAGTLVTADPQIARQFIADAARTHGRIQILNEESAKESTGHGSPLPQLVHGGPGRAG 479 GGSLA ++ + D F+ A +HGR+ +++ A +GHG +P +HGGPGRAG Sbjct: 417 GGSLAASVFSGDAAFLAGFVPAIATSHGRVLVVDSSVAASHSGHGVVMPHCIHGGPGRAG 476 Query: 480 GGEELGGLRAVKHYMQRTAVQGSPTMLAAISK 511 GGEELGGLR ++ YMQR+A+QGS +ML A+++ Sbjct: 477 GGEELGGLRGLRFYMQRSAIQGSRSMLDAMTQ 508 Lambda K H 0.319 0.134 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 843 Number of extensions: 35 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 681 Length of database: 515 Length adjustment: 37 Effective length of query: 644 Effective length of database: 478 Effective search space: 307832 Effective search space used: 307832 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory