Align methylmalonyl-CoA mutase (subunit 2/2) (EC 5.4.99.2) (characterized)
to candidate WP_011382757.1 AMB_RS01570 protein meaA
Query= BRENDA::O74009 (563 letters) >lcl|NCBI__GCF_000009985.1:WP_011382757.1 AMB_RS01570 protein meaA Length = 665 Score = 384 bits (987), Expect = e-111 Identities = 210/488 (43%), Positives = 306/488 (62%), Gaps = 11/488 (2%) Query: 83 RGRIWTMRQYAGYATAEESNKRYKYLLSQGQTGLSVAFDLPTQLGYDSDHPLAEGEVGKV 142 R + W R Y+G+++A ESNK Y+ L++GQTGLS+AFDLPTQ GYDSDH LA+GEVGKV Sbjct: 14 REKPWLFRTYSGHSSAAESNKLYRTNLTKGQTGLSIAFDLPTQTGYDSDHVLAKGEVGKV 73 Query: 143 GVAIDSLWDMRILFDGIPLDKVSTSMTINSTAANLLAMYILVAEEQGVSQEKLRGTVQND 202 GV + L DM LF+GIPL+K++TSMTIN+ AA LL++YI AE QG ++ L GT QND Sbjct: 74 GVPVCHLGDMMTLFEGIPLEKMNTSMTINAPAAWLLSLYIAAAERQGANRSVLNGTTQND 133 Query: 203 ILKEYIARGTYIFPPQPSMRLTTDIIMYCAENVPKWNPISISGYHIREAGANAVQEVAFT 262 ++KEY++RGTYIF PQPS++LT D+I + VPKWNP+++ YH++EAGA QE+A+ Sbjct: 134 VIKEYLSRGTYIFAPQPSLKLTGDVIAFTYREVPKWNPMNVCSYHLQEAGATPEQELAYA 193 Query: 263 LADGIEYVKAV--IERGMDVDKFAPRLSFFFAAHNNFLEEIAKFRAARRLWAYIMKEWFN 320 LA + + V D ++ R+SFF A F+ E+ K RA LW I + Sbjct: 194 LATAVAVLDTVRPTVPAADFEQVVSRISFFVNAGIRFVTELCKMRAFTELWDEICVGRYG 253 Query: 321 AKNPRSMMLRFHTQTAGSTLTAQQPENNIVRVAIQALAAVL---GGTQSLHTNSYDEALS 377 K+ ++ R+ Q LT QQPENN+ R+ ++ LA VL +++ +++EAL Sbjct: 254 VKDEKARRFRYGVQVNSLGLTEQQPENNVYRIVMEMLAVVLSKNARARAVQLPAWNEALG 313 Query: 378 LPTEKSVRIALRTQQIIAYESGVVDTVDPLGGAYYIEWLTDHIYEEALKYIEKIQKMGGM 437 LP + +LR QQI+AYE+ +++ D G++ I + + E A + + +I MGG Sbjct: 314 LPRPWDQQWSLRLQQIMAYETDLLEFGDIFDGSHEITRKVEALKEGAREELARIDAMGGA 373 Query: 438 MRAIERGYVQKEIAEAAYKYQKEIEEGKRIIVGVNAFVTDEPI-----EVEILKVDPSIR 492 + A+E Y+++++ E+ + IE G++I+VGVN + EP E I+ VDP Sbjct: 374 VSAVESSYMKQKLVESNARRIGAIETGEQIVVGVNKWTETEPSPLTTGEGSIMTVDPKAE 433 Query: 493 EKQIERLKKLRSERDNKKVQEALDKLRNAAEKEDENLMPYIIEAHRHLATLQEVTDVLRE 552 +QIERLK R+ RD K V +AL +LR+AA + + P I AH + T E LR+ Sbjct: 434 AEQIERLKAFRAARDAKAVDKALAELRSAANEGRNVMEPSIAAAHAGVTT-GEWAQCLRD 492 Query: 553 IWGEYRAP 560 ++GEYRAP Sbjct: 493 VFGEYRAP 500 Lambda K H 0.318 0.134 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 798 Number of extensions: 36 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 563 Length of database: 665 Length adjustment: 37 Effective length of query: 526 Effective length of database: 628 Effective search space: 330328 Effective search space used: 330328 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory