Align Probable glycine dehydrogenase (decarboxylating) subunit 2; EC 1.4.4.2; Glycine cleavage system P-protein subunit 2; Glycine decarboxylase subunit 2; Glycine dehydrogenase (aminomethyl-transferring) subunit 2 (uncharacterized)
to candidate WP_011383212.1 AMB_RS03940 glycine dehydrogenase (aminomethyl-transferring)
Query= curated2:Q9A354 (524 letters) >NCBI__GCF_000009985.1:WP_011383212.1 Length = 499 Score = 665 bits (1715), Expect = 0.0 Identities = 331/496 (66%), Positives = 379/496 (76%), Gaps = 3/496 (0%) Query: 22 TLTGARGLLQDEALIFELDGWNKTGVDLPPVTAAPSSDLNGLLRDAPIGLPGLSEPETVR 81 T++G R L +E LIFEL VDLP L R + LP LSEP+ VR Sbjct: 6 TISGNRALQIEEKLIFELGNPGSVAVDLPEPAPFDLERLGDAPRRGRVALPDLSEPQVVR 65 Query: 82 HYVRLSQKNHAIDLALYPLGSCTMKHNPRLNEKMARLPGFSDIHPLQPQSTVQGALELMD 141 HY RLSQKN+ ID YPLGSCTMKHNPRL+EK+ARLPG +D+HPLQPQ TVQGALE++D Sbjct: 66 HYTRLSQKNYGIDTGFYPLGSCTMKHNPRLSEKVARLPGLADLHPLQPQKTVQGALEVID 125 Query: 142 RLAHWLKTLTGMPAVALTPKAGAHGELCGLLAIRAAHEAAGNGHRKTVLAPTSAHGTNPA 201 LAHWLK LTGMPAVA++P AGAHGE CGL+AIR+AHE G GHRK VL P SAHGTNPA Sbjct: 126 TLAHWLKALTGMPAVAMSPAAGAHGEWCGLMAIRSAHEDKGEGHRKRVLVPESAHGTNPA 185 Query: 202 TAAFVGYTVVEIAQTEDGRVDLADLESKLGDHVAAIMVTNPNTCGLFERDVVEIARLTHA 261 +AA GYTV I E+GRVDLA L++KLG VA +M+TNPNTCGLFE ++VEIA H Sbjct: 186 SAAMCGYTVDPIPALENGRVDLAALKAKLGPDVACLMLTNPNTCGLFETEIVEIAAAVHG 245 Query: 262 AGAYFYCDGANFNAIVGRVRPGDLGVDAMHINLHKTFSTPHGGGGPGAGPVVLSEALAPF 321 AGAYFYCDGANFNAIVGRV+ DLG+DAMHINLHKTF+TPHGGGGPGAGP VLS ALA F Sbjct: 246 AGAYFYCDGANFNAIVGRVKIADLGIDAMHINLHKTFATPHGGGGPGAGPTVLSAALAAF 305 Query: 322 APTPWLTHGDNGFELAEHAGDDDAKTAFGRMSAFHGQMGMYVRAYAYMLSHGADGLRQVA 381 P P++ HG +G EL E G D FGR+ FHGQ G++VRA AY+ S G+DGLRQ + Sbjct: 306 VPVPYVVHGASGLELVE--GKRDGAKPFGRVKGFHGQFGVFVRALAYIQSMGSDGLRQAS 363 Query: 382 EDAVLNANYIKAQLKDVMSPAFPEGPCMHEALFDDSWLEGTGVTTLDFAKAMIDEGFHPM 441 DAVLNANY+ A LKD +S +F +GPCMHEALFDD +L+ TGVTTLDFAKAMIDEG+HPM Sbjct: 364 SDAVLNANYLLASLKDELSASF-DGPCMHEALFDDRFLKDTGVTTLDFAKAMIDEGYHPM 422 Query: 442 TMYFPLVVHGAMLIEPTETESKHELDRFIAALRALAGAAKAGDTERFKGAPFHAPLRRLD 501 TMYFPLVVHGA+L+EPTETESK LD+FIA ++ LA AKAG E FK AP P RRLD Sbjct: 423 TMYFPLVVHGALLMEPTETESKDTLDQFIAVVKGLAAKAKAGGVEDFKAAPRLTPRRRLD 482 Query: 502 ETQAARKPRLRWKPVA 517 ET AAR P LRWK A Sbjct: 483 ETLAARSPVLRWKTAA 498 Lambda K H 0.318 0.135 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 847 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 524 Length of database: 499 Length adjustment: 35 Effective length of query: 489 Effective length of database: 464 Effective search space: 226896 Effective search space used: 226896 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory