Align D-lactate oxidase and glycolate oxidase, FAD-linked subunit (EC 1.1.3.15) (characterized)
to candidate WP_011386481.1 AMB_RS20900 FAD-binding oxidoreductase
Query= reanno::psRCH2:GFF3772 (499 letters) >NCBI__GCF_000009985.1:WP_011386481.1 Length = 936 Score = 140 bits (353), Expect = 2e-37 Identities = 139/520 (26%), Positives = 209/520 (40%), Gaps = 76/520 (14%) Query: 17 DKAALLAELQAQLPDLDILHRSEDLKPYECDGLSAYRTTPLLVVLPERIEQVETLLKLCH 76 D +ALL +L +P ++ Y D S YR P +V +V+ +L C Sbjct: 7 DYSALLQDLTGVMPVSRLITDPLRRLAYGTDA-SFYRLVPQVVAEVRDEAEVKGVLAACR 65 Query: 77 QRGVPVVARGAGTGLSGGALPLEQGILLVMARFNKILEVDPAGRFARVQPGVRNLAISQA 136 + G PV R AGT LSG A+ +L+++ V+ G+ R+QPGV ++ Sbjct: 66 RHGAPVTFRAAGTSLSGQAV--SDSVLMILGTGWTQAVVEDEGKRIRLQPGVIGAEANRR 123 Query: 137 AAPYELYYAPDPSSQIACSIGGNVAENAGGVHCLKYGLTVHNLLKVDILTVEGERMTLGS 196 A + PDP+S +C IGG A NA G+ C + ++ + ++ +G + G+ Sbjct: 124 LAAFARKIGPDPASIDSCKIGGIAANNASGMCCGTSDNSYQTVMSMRLVLADGTLVDTGN 183 Query: 197 ---------------DALDSPG------------------------------------FD 205 LD G D Sbjct: 184 PESVAAFRASHAELLSRLDDMGRRVRDDETLAGRIRHKFAIKNTTGYSLNALVDFTDPLD 243 Query: 206 LLA-LFTGSEGMLGIVTEVTVKLLPKPQVAKVLLAAFDSVEKAGRAVGDIIAAGIIPGGL 264 +L L GSEG LG + E+T + +P+ L F + +A RAV + A + + Sbjct: 244 ILTHLMIGSEGTLGFIAEITYRTVPEHAHKASALLLFPDIAEACRAVVALKQAPV--SAV 301 Query: 265 EMMDNLSIRAAEDFIHAGYPV------DAEAILLCELDGVEADVHDDCARVSEVLK-LAG 317 E+MD S+R ED G P D LL E G A+ A ++E+ + L+G Sbjct: 302 ELMDRASLRCVED--KPGMPAQIRGLADGVTSLLVEARGETAEAL--AANLAEIGRVLSG 357 Query: 318 ATEV---RLAKDEAERVRFWAGRKNAFPAVG---RISPDYYCMDGTIPRRELPGVLKGIS 371 T + D E W RK FPA+G ++ D P L + Sbjct: 358 VTTLFPPAFTDDPYEYGTLWKIRKGLFPALGAVRKVGTTVIIEDVAFPIESLAAATTDLE 417 Query: 372 DLSEQFGLRVANVF-HAGDGNMHPLILFDANQPGELERAEDLGGKILELCV-KVGGSITG 429 L + G A +F HA DGN+H D E++R ++ EL V K GS+ Sbjct: 418 HLCRKHGYDEAIIFGHALDGNLHFTFTQDFGIKEEVDRYARFMDEVAELVVNKYDGSLKA 477 Query: 430 EHGVGREKINQMCSQFNADELTLFHAVKAAFDPSGLLNPG 469 EHG GR + ++ + L +K DP GLLNPG Sbjct: 478 EHGTGRNMAPFVEMEWGTEATALMWDIKGLLDPLGLLNPG 517 Lambda K H 0.320 0.140 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 999 Number of extensions: 47 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 499 Length of database: 936 Length adjustment: 39 Effective length of query: 460 Effective length of database: 897 Effective search space: 412620 Effective search space used: 412620 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory