Align Phosphogluconate dehydratase; 6-phosphogluconate dehydratase; EC 4.2.1.12 (characterized)
to candidate WP_011384917.1 AMB_RS12770 dihydroxy-acid dehydratase
Query= SwissProt::P21909 (607 letters) >NCBI__GCF_000009985.1:WP_011384917.1 Length = 616 Score = 211 bits (536), Expect = 1e-58 Identities = 178/588 (30%), Positives = 266/588 (45%), Gaps = 62/588 (10%) Query: 64 DFNRMNIGVVTSYNDMLSAHEPYYRYPEQMKVFAREVGATVQVAGGVP------AMCDGV 117 DF + I + S+ + H +K + V ++ AGGV A+ DG+ Sbjct: 31 DFGKPIIAIANSFTQFVPGHV-------HLKDLGQMVAREIEKAGGVAKEFDTIAIDDGI 83 Query: 118 TQGQPGMEESLFSRDVIALATSVSLSHGMFEGAALLGICDKIVPGLLMGALRFGHLPTIL 177 G GM SL SR++IA + ++ + + CDKI PG+LM +LR ++PTI Sbjct: 84 AMGHAGMLYSLPSRELIADSVEYMVNAHCADAMVCISNCDKITPGMLMASLRL-NIPTIF 142 Query: 178 VPSGPMTTG--IPNKEKIRIRQLYAQGKIGQKELLDMEAACYHAE-----GTCTFYGTAN 230 + GPM G E + + A K + + D EA + E G+C+ TAN Sbjct: 143 ISGGPMEAGKVTYQGETHAVDLIDAMIKGADQNVSDEEALAFEKESCPTCGSCSGMFTAN 202 Query: 231 TNQMVMEVLGLHMPGSAFVTPGTPLRQALTRAAVHRVAELG---WKGDDYRPLGKIIDE- 286 + ++E LGL +PG+ V R+ L A R+ +L ++GDD L + I Sbjct: 203 SMNCLIEALGLGLPGNGTVVATHADRKELFLEAGRRIVDLARRAYEGDDASVLPRSIATF 262 Query: 287 KSIVNAIVGLLATGGSTNHTMHIPAIARAAGVIVNWNDFHDLSEVVPLIARIYPNGPR-D 345 ++ NA+ +A GGSTN +H+ A A+ AGV +D LS VP + ++ PN P Sbjct: 263 QAFENAMTLDIAMGGSTNTVLHLLAAAQEAGVAFGMSDIDRLSRRVPCLCKVAPNVPDVH 322 Query: 346 INEFQNAGGMAYVIKELLSANLLNRD-----VTTIAKG-------------GIEEYAKAP 387 I + AGG+ ++ +L L+NR+ T+A+G +E Y AP Sbjct: 323 IEDVHRAGGIMGILGQLDRGGLINRECGTIHARTLAEGLDRWDISRSNDPKVVEFYKAAP 382 Query: 388 ALNDAGELV-----WKPAGEPGDDTILRPVSNPFAKDGGLRLLEGNLG--RAMYKASAVD 440 E W + ++R V N F+KDGGL +L GNL + K + VD Sbjct: 383 GGVRTTEAFSQSKRWAEVDKDRTAGVIRSVDNAFSKDGGLAVLFGNLALDGCIVKTAGVD 442 Query: 441 PKFWTIEAPVRVFSDQDDVQKAFKAGELNKDVIVVVRFQGPRAN-GMPELHKLTPALGVL 499 K T P + QD+ G++ +V+VR++GPR GM E+ T L + Sbjct: 443 DKNLTFSGPAVICESQDEAVAKILGGQVKSGDVVIVRYEGPRGGPGMQEMLYPTSYLKSM 502 Query: 500 QDNGYKVALVTDGRMSGATGKVPVALHVSPEALGGGAIGKLRDGDIVRISVEEGKLEALV 559 G + AL+TDGR SG T + + HVSPEA GGAIG ++ GDI+ I + + V Sbjct: 503 -GLGKECALITDGRFSGGTSGLSIG-HVSPEAAEGGAIGLIQAGDIIDIHIPNRSIAIRV 560 Query: 560 PADEWNAR--------PHAEKPAFRPGTGRELFDIFRQNAAKAEDGAV 599 E R P A KP R + A GAV Sbjct: 561 SDAELEKRRQAMQALGPKAWKPVDRDRQVSAALRAYAAMTTSAARGAV 608 Lambda K H 0.318 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 988 Number of extensions: 53 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 607 Length of database: 616 Length adjustment: 37 Effective length of query: 570 Effective length of database: 579 Effective search space: 330030 Effective search space used: 330030 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory