GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Amycolatopsis halophila YIM 93223

Align 2-aminoadipate transaminase; 2-aminoadipate aminotransferase; L-2AA aminotransferase; EC 2.6.1.39 (characterized)
to candidate WP_034272173.1 AMYHA_RS15990 acetylornithine transaminase

Query= SwissProt::Q88FI7
         (416 letters)



>NCBI__GCF_000504245.1:WP_034272173.1
          Length = 393

 Score =  201 bits (510), Expect = 4e-56
 Identities = 142/398 (35%), Positives = 202/398 (50%), Gaps = 35/398 (8%)

Query: 16  ITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYAFNAAPHG 75
           + L  G  A V+D DG  Y+D VGGI V  LGH +PAVVEA+  Q   L H + N   + 
Sbjct: 20  LELVRGDGATVFDADGNAYLDLVGGIAVNALGHAHPAVVEAVSEQVATLGHTS-NLYINP 78

Query: 76  PYLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVARGATGKRAIIAFDGGFHGRTLA 135
             L+L E L     +S  +  +  NSGAEA E A+K+ R  TGK  ++A DGGFHGRT+ 
Sbjct: 79  VALSLAETLLDIAGLSGKV--LFCNSGAEAVEAAIKITR-LTGKSKLVACDGGFHGRTMG 135

Query: 136 TLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELAVE-DVAAF 194
            L++ G+ +  +     LPG V H+P+   DT               ++E AV+ D AA 
Sbjct: 136 ALSVTGQPSKREPFEPLLPG-VTHVPF--GDTA--------------ALESAVDGDTAAV 178

Query: 195 IFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFPRLGIEPDL 254
             EPV GEGG +     F +A R      G L+++DE+Q+G GR G  FAF + G+ PD+
Sbjct: 179 FVEPVLGEGGVVPAPDGFLRAAREIATAAGALLVLDEVQTGIGRLGSWFAFQQAGVTPDV 238

Query: 255 LLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQMTDENLATW 314
           + LAK + GG+PLGAV+G  +    L  G  G T+ GNPI+CAA  A +  + ++ L   
Sbjct: 239 ITLAKGLGGGLPLGAVIGIGQTGELLKPGQHGTTFGGNPIACAAGHAVIRTIREQGLLDH 298

Query: 315 GERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPAPAQLAKVMEAARAR 374
            E   + + +   +       P +  + G G ++GI      G   P     V  AA+  
Sbjct: 299 VETLGKDLAAGVRKLD----HPLVSEVRGAGLLQGI------GLTKPV-APTVATAAQRA 347

Query: 375 GLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCL 412
           G L+ P      +IRL  PL I    + + L  L   L
Sbjct: 348 GYLINP--VQPDVIRLAPPLIITERQVADFLAALPAAL 383


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 499
Number of extensions: 27
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 393
Length adjustment: 31
Effective length of query: 385
Effective length of database: 362
Effective search space:   139370
Effective search space used:   139370
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 26 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory