GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Novosphingobium barchaimii LL02

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate WP_059151920.1 V474_RS13220 adenosylmethionine--8-amino-7-oxononanoate transaminase

Query= curated2:Q8TUZ5
         (389 letters)



>NCBI__GCF_001046635.1:WP_059151920.1
          Length = 427

 Score =  174 bits (442), Expect = 3e-48
 Identities = 126/404 (31%), Positives = 203/404 (50%), Gaps = 38/404 (9%)

Query: 19  PVTLVP-GEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQVERLIHCSNLYYN 77
           P+ LV   EGA +   +G   ID V+   V   GHCHP ++ AV EQ ++L       + 
Sbjct: 22  PIPLVTHAEGALLHTADGRTVIDAVSSWWVTTHGHCHPRIMAAVAEQAQKLDQLIFAGWT 81

Query: 78  EPQAEA-ARLLAEAAPKDLNKVFFCNSGTESVECAIKLARKF----------TGCTKFIA 126
              AEA A  L    P +L +VFF +SG+ SVE A+K+A  +          T   + + 
Sbjct: 82  HEPAEAVAAGLTAIMPPELTRVFFSDSGSTSVEVALKMALGYWHANTPANGGTPRHRIVV 141

Query: 127 FEGGFHGRTMGALSATWKPEFREPFEPLVPEFEHVPYGDVNAVEKAID--------DDTA 178
            E  +HG T+GA+S   +  F +P++PL+ +   +P+    A ++ +D         DTA
Sbjct: 142 MEHSYHGDTIGAMSVGQRGVFNQPYDPLLFDVGRIPFPAAGAEQETLDALEALCRQTDTA 201

Query: 179 AVIVEP-VQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRTGQFFAFEHEDVL 237
           A+IVEP V G  G+ I     L+ + ++C  +G+L I DEV +G GRTG   A E   V+
Sbjct: 202 ALIVEPLVLGAGGMLIYGAETLKAMADICARYGVLFIADEVMTGWGRTGTLLACEQAGVV 261

Query: 238 PDIVCLAKGL-GGGVPVGATIAREEVAEAFEPGD------HGSTFGGNPLACAAVCAAVS 290
           PDI+CL+KGL GG +P+  T+A E +  A    D      H S++  NP+ACAA  A ++
Sbjct: 262 PDILCLSKGLTGGSLPLAVTMASEAIFAAHWSTDRARMFFHSSSYTANPIACAAAAANLA 321

Query: 291 TVLEENLPEAAERKGKLAMRILSEAEDV--VEEVRGRGLMMGVEV---GDDERAKDVARE 345
              EE + E     G+     L +       +  R  G +  +++   G+      +A E
Sbjct: 322 IWREEPVMECVADLGRRQSAWLEKLGRFCHFDNPRALGTIAALDLRTRGEGGYMDGLAPE 381

Query: 346 ML----DRGALVNVTSGDVIRLVPPLVIGEDELEKALAELADAL 385
           ++     R  L+    G+ + ++PP  I +D+L++    + +A+
Sbjct: 382 LMAFFRSRDILLR-PLGNTVYVMPPYCITDDQLDEVWNAIGEAV 424


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 417
Number of extensions: 22
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 427
Length adjustment: 31
Effective length of query: 358
Effective length of database: 396
Effective search space:   141768
Effective search space used:   141768
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 26 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory