GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Novosphingobium barchaimii LL02

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate WP_059153660.1 V474_RS23835 diaminobutyrate--2-oxoglutarate transaminase

Query= curated2:Q8TUZ5
         (389 letters)



>NCBI__GCF_001046635.1:WP_059153660.1
          Length = 440

 Score =  185 bits (469), Expect = 2e-51
 Identities = 134/400 (33%), Positives = 200/400 (50%), Gaps = 28/400 (7%)

Query: 12  MNTYSR-FPVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQV--ERL 68
           + TYSR  P      +G  + D EG  Y+D ++G +    GH HP +  A+ + +  + +
Sbjct: 24  VRTYSRSMPRQFGKAQGPWLHDSEGGRYLDFLSGCSSLNYGHNHPVLKAALMDYIAADGV 83

Query: 69  IHCSNLYYNEPQAEAAR---LLAEAAPKDLNKVFFCNSGTESVECAIKLARKFTGCTKFI 125
            H  +L+ +   A       ++ E    D   +F   +GT +VE AIKLARK TG    +
Sbjct: 84  THALDLHTDAKSAFLRTFEDVILEPRGLDYRVMFTGPTGTNAVEAAIKLARKVTGRELVV 143

Query: 126 AFEGGFHGRTMGALSATWKPEFREPFEPLVPEFEHVP----YGD----VNAVEKAIDDDT 177
           AF  GFHG T+GAL+ T     R      +    H P    YG+     + +E+ + D +
Sbjct: 144 AFTNGFHGMTLGALACTGNAGKRGGAGVPLSHVSHEPFDGYYGEEVDTADLLEQRLADPS 203

Query: 178 ------AAVIVEPVQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRTGQFFAF 231
                 AA +VE VQGE G+      +LR +  L  +HG LLIVD++Q+G GR G FF+F
Sbjct: 204 SGLDAPAAFLVETVQGEGGLNAARPDWLRRIAALAKKHGALLIVDDIQAGCGRAGGFFSF 263

Query: 232 EHEDVLPDIVCLAKGLGG-GVPVGATIAREEVAEAFEPGDHGSTFGGNPLACAAVCAAVS 290
           E     PDIV LAK L G G+P   T+ R ++ + + PG+H  TF GN  A     A++ 
Sbjct: 264 EGMGFTPDIVTLAKSLSGMGLPFALTLMRPDL-DIWSPGEHNGTFRGNNHAFVTATASLR 322

Query: 291 TVLEEN--LPEAAERKGKLAMRILSEAEDVVEEVRGRGLMMGVEVGDDERAKDVAREMLD 348
               +       A R G L  R+   AE      RGRG+M G++VG  E A  +     D
Sbjct: 323 EFWADPAFADAVARRGGILERRLERMAERHGLSTRGRGMMRGIDVGSGEVASKITSACFD 382

Query: 349 RGALVNVTSG---DVIRLVPPLVIGEDELEKALAELADAL 385
            G ++  TSG   ++++++ PL I +  LE  L  L +A+
Sbjct: 383 EGLIIE-TSGAHDEIVKVLAPLTIEDAVLEAGLDILEEAV 421


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 418
Number of extensions: 22
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 440
Length adjustment: 31
Effective length of query: 358
Effective length of database: 409
Effective search space:   146422
Effective search space used:   146422
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 26 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory