GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Sphingomonas indica Dd16

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate WP_085218250.1 B9N75_RS07610 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::Q2RK33
         (390 letters)



>NCBI__GCF_900177405.1:WP_085218250.1
          Length = 389

 Score =  178 bits (452), Expect = 2e-49
 Identities = 129/392 (32%), Positives = 195/392 (49%), Gaps = 14/392 (3%)

Query: 4   ARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPENHR 63
           A+R++      F   E+ + +   +G+D+I L  G P   TP H I + V  A +     
Sbjct: 5   AQRLQRSSNKSFGMYEEAV-KLEAQGLDLIHLEFGRPHADTPGH-IKEAVKTALDAGIVH 62

Query: 64  YPTSEGLLAFRQAVA----DWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDIN 119
           Y    G L+FRQA+A    D+ +  YGVD     E++   G         +  +DPGD  
Sbjct: 63  YGDFRGTLSFRQALAEKLTDFNKLDYGVD-----EILVTNGLTHASFAAFMAAIDPGDEV 117

Query: 120 LVPDPGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTG 179
           ++ +P YP +     LAGG     PL AAN F     AI + +  + +++ +  P NPTG
Sbjct: 118 ILLEPYYPQHVAKVELAGGTVVTAPLDAANNFAISHAAIAAKITPKTRMIVLVNPANPTG 177

Query: 180 AVADLKFFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQAPGAKEVGIEFNSVSKP 239
            V      + V E A ++DLIV  D  Y  ITYDG    S    PG +E  I   + +K 
Sbjct: 178 RVYTRAELEIVAELAIAHDLIVLCDEVYEYITYDGAEHVSIASLPGMRERTITCFAFTKA 237

Query: 240 YNMTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQE 299
           Y+M GWR+G+    A +I A+ RI +   +     VQ    AA+TGPQE +  +    + 
Sbjct: 238 YSMDGWRVGYLTADARLIPAILRIITTDVTHVNVFVQEGARAAVTGPQEPMHAMVEADRR 297

Query: 300 RRDIIVEGFNSL-GWHLEKPKATFYVWAPV-PRGYTSASFAEMVLEKAGVIITPGNGYGN 357
           +R+I+V   N + G    +P+ T Y +  +   G TSA+ A  +L KA V+   G+ YG 
Sbjct: 298 KREIVVRALNQMPGVTCAEPQGTIYAFPDIRGTGRTSAALATEILHKAHVVTEAGSFYGP 357

Query: 358 YGEGYFRIAL-TISKERMQEAIERLRRVLGKV 388
            GEG+ RI   + S+ER++E +ERL R    +
Sbjct: 358 AGEGHLRICFGSESEERVREGMERLTRFFNTI 389


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 355
Number of extensions: 18
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 389
Length adjustment: 30
Effective length of query: 360
Effective length of database: 359
Effective search space:   129240
Effective search space used:   129240
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 26 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory