GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Psychromonas ingrahamii 37

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; IP210; Iron-responsive protein-like; IRP-like; Major iron-containing protein; MICP; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_011770425.1 PING_RS10955 aconitate hydratase AcnA

Query= SwissProt::P37032
         (891 letters)



>NCBI__GCF_000015285.1:WP_011770425.1
          Length = 891

 Score = 1091 bits (2822), Expect = 0.0
 Identities = 543/886 (61%), Positives = 667/886 (75%), Gaps = 4/886 (0%)

Query: 7   SLSTKSQLTVDGKTYNYYSLKEAENKHFKGINRLPYSLKVLLENLLRFEDGNTVTTKDIK 66
           ++  K+  TV+G+ Y+YY++ + E      I RLP S+KVLLENLLR +  N  + K+I+
Sbjct: 7   NIDAKNTFTVNGQVYSYYAINKGELAGNDSITRLPVSIKVLLENLLRHQQDNGGSRKEIE 66

Query: 67  AIADWLHNKTSQHEIAFRPTRVLMQDFTGVPAVVDLAAMRTAIVKMGGNADKISPLSPVD 126
           A+A     + S  EI ++P RVLMQDFTGVPAVVDLAAMR A+VK G +  KI+PL+ VD
Sbjct: 67  ALAS-SQGRGSTTEINYQPARVLMQDFTGVPAVVDLAAMRNALVKQGLDPQKINPLAKVD 125

Query: 127 LVIDHSVMVDKFASADALEVNTKIEIERNKERYEFLRWGQKAFSNFQVVPPGTGICHQVN 186
           LVIDHSV VDKF+S  A + N  IE+ RNKERYEFL+WG++AF NF VVPPGTGICHQVN
Sbjct: 126 LVIDHSVNVDKFSSKSAFDENVAIEMARNKERYEFLKWGKQAFENFSVVPPGTGICHQVN 185

Query: 187 LEYLGKTVWNSENDGQLYAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSM 246
           LEYL K VW+   + +   YPDTLVGTDSHTTMIN LGVLGWGVGGIEAEA MLGQP+SM
Sbjct: 186 LEYLAKVVWSETTENESLVYPDTLVGTDSHTTMINALGVLGWGVGGIEAEAVMLGQPISM 245

Query: 247 LIPEVIGFKLSGKLKEGITATDLVLTVTQMLRKKGVVGKFVEFYGPGLNDLPLADRATIS 306
            IP+V+GF+L+G+L EGITATDLVL V QMLRK GVVGKFVEFYG GL  LPLADRATI+
Sbjct: 246 QIPDVVGFELTGRLAEGITATDLVLQVVQMLRKHGVVGKFVEFYGAGLAHLPLADRATIA 305

Query: 307 NMAPEYGATCGFFPVDKETIKYLELTGRDKHTIALVEAYAKAQGMWYDKDNEEPVFTDSL 366
           NMAPEYGATCGFFPVD++T+ YL+LTGRDK TI LVE+Y+K QG+W D+   +  F+D+L
Sbjct: 306 NMAPEYGATCGFFPVDQQTLNYLQLTGRDKQTIDLVESYSKLQGLWRDETTPKADFSDTL 365

Query: 367 HLDLGSVEPSLAGPKRPQDKVNLSSLPVEFNNFLIEVGKEKEKEKTFAVKNKDFQMKHGH 426
            LD+  +EP+LAGP RPQD+V +  L    ++F+   GK ++K   F + + D  + HG 
Sbjct: 366 LLDMSDIEPNLAGPDRPQDRVPMRQLKTATDDFIDLNGKGQQKTTDFPINDSDQSLHHGS 425

Query: 427 VVIAAITSCTNTSNPSVLMAAGLVAKKAIEKGLQRKPWVKSSLAPGSKVVTDYLRHAGLQ 486
           +VIAAITSCTNTSNP+V++AAGL+AKKA+ KGL ++PWVK+SLAPGS+VVTDYL   GLQ
Sbjct: 426 LVIAAITSCTNTSNPAVMLAAGLLAKKALAKGLVKQPWVKTSLAPGSRVVTDYLVETGLQ 485

Query: 487 TYLDQLGFNLVGYGCTTCIGNSGPLPDDISHCVAEHDLVVSSVLSGNRNFEGRVHPQVRA 546
             L+ LGFNLVGYGCTTCIGNSGPLP  +  C+ E+DL+VS+VLSGNRNF GR+HPQV+A
Sbjct: 486 QSLNTLGFNLVGYGCTTCIGNSGPLPKPVQECIEENDLIVSAVLSGNRNFAGRIHPQVKA 545

Query: 547 NWLASPPLVVAYALCGTTCSDLSREPIGQDKEGNDVYLKDIWPSNEEIAAEVAKVSGTMF 606
           +WLASPPLVVAY+L GTT  DLS++PIG   +G  VYLKDIWPSN EI   +  VS  MF
Sbjct: 546 SWLASPPLVVAYSLAGTTRIDLSQDPIGTGSDGEKVYLKDIWPSNAEITELLKSVSHQMF 605

Query: 607 RKEYAEVFKGDAHWQAIQTSSGQTYEWNPDSTYIQHPPFFENLSLKPEPLKPIKQAYVLA 666
            K Y+ VF GD  WQAIQ+     Y+++ +STYIQ PPFFE      +    I  A +L 
Sbjct: 606 EKRYSAVFDGDKEWQAIQSGEEANYQFSDESTYIQKPPFFE--PQYRDNFSNIVDAPILV 663

Query: 667 LFGDSITTDHISPAGSIKASSPAGLYLKSKGVDEKDFNSYGSRRGNHEVMMRGTFANIRI 726
           + GDS+TTDHISPAG+I   SPA  +L++ G+DEKDFNSYGSRRGNHE+MMRGTF NIRI
Sbjct: 664 MLGDSVTTDHISPAGAIPKDSPAAQFLRNHGIDEKDFNSYGSRRGNHEIMMRGTFGNIRI 723

Query: 727 RNEMTPGQEGGVTRYVPTGETMSIYDAAMRYQENQQDLVIIAGKEYGTGSSRDWAAKGTN 786
           RNEMTP +EGG T      + M I+DAAMRYQ+ ++  V+IAGKEYG GSSRDWAAKGT 
Sbjct: 724 RNEMTPDKEGGYTHLQGQSQAMFIFDAAMRYQQEKRSSVVIAGKEYGMGSSRDWAAKGTL 783

Query: 787 LLGVKAVITESFERIHRSNLIGMGILPLQFKEGTTRKTLKLDGSERISI-EISDKLTPGA 845
           LLG KAVI ESFERIHR+NL GMG+LPLQF  G  RK+L+L G E   I  +  ++    
Sbjct: 784 LLGAKAVIAESFERIHRANLAGMGVLPLQFMAGEDRKSLQLTGDESFDIMGLEGEMNANQ 843

Query: 846 MVPVTIERQDGDIEKIETLCRIDTADELEYYKNGGILQYVLRKISS 891
            +   I    G   KI+ L R+DTA E++YY+ GG+L YVL +I S
Sbjct: 844 TLDAVIHYPSGKQRKIQLLSRLDTAIEVDYYRAGGVLTYVLNRIVS 889


Lambda     K      H
   0.316    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2001
Number of extensions: 97
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 891
Length adjustment: 43
Effective length of query: 848
Effective length of database: 848
Effective search space:   719104
Effective search space used:   719104
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory