Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate WP_004689079.1 BMI_RS13750 3-hydroxyacyl-CoA dehydrogenase
Query= BRENDA::A4YDS4 (651 letters) >NCBI__GCF_000022745.1:WP_004689079.1 Length = 738 Score = 177 bits (448), Expect = 2e-48 Identities = 137/416 (32%), Positives = 207/416 (49%), Gaps = 29/416 (6%) Query: 2 KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLKEGVE 61 K+ VIG+G MG GIA + A AG V + D E + ++K + G E + Sbjct: 328 KIGVIGAGFMGAGIAYVTAKAGIPVVLIDRDQESADKGKAHTADLITKEMQKGRATEADK 387 Query: 62 QVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPIS 121 + L + T L+G+D VIEAV ED E+KR AE SAV A+NTS+LPI+ Sbjct: 388 EKLLSLITATPDYAQLEGADLVIEAVFEDREVKRVATEKAEEVLKSSAVFASNTSTLPIT 447 Query: 122 EIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKDV 181 +A V K P+ +G+HFF+P M LVE++ GK TSD+ + + +++ K IVV D Sbjct: 448 GLAKVSKRPKNFIGIHFFSPVDKMMLVEVILGKKTSDKALAVALDYVRAIKKTPIVVNDT 507 Query: 182 PGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSVW 241 GF+VNR +LR M ++ +G+ + + +A G P+G L D T +D+ + Sbjct: 508 RGFYVNRCVLRYMSEAYNMLVEGVPA--AMIENAARMAGMPVGPLALNDETAIDLSQKIL 565 Query: 242 KAVTA-RGFKAFPCSSTE---KLVSQ-GKLGVKSGSGYYQYPS--------PG-----KF 283 KA A G KA E KLV++ + G K+G G+Y YP+ PG Sbjct: 566 KATLADLGPKAVDPRHVELVDKLVNEFDRKGRKNGKGFYDYPAKPAKKHLWPGLKDLYPQ 625 Query: 284 VRPTLPSTSKKLGRYLISPAVNEVSYLLREGIV-GKDDAEKGCVLGLGLPK---GILSYA 339 P + R+L++ A+ E + ++ EGIV +A+ G +L G G LSY Sbjct: 626 QNPDKIDVKELKERFLVTIAL-EAARVMEEGIVTDPREADVGSILAFGFAPYTGGTLSYI 684 Query: 340 DEIGIDVVVNTLEEMRQTSGMDHYSPDPLLLSMVKEGKLGRKSGQGFHTYAHEEAK 395 D +G V +++++ G +P LLL M + G+ Q F+ Y E K Sbjct: 685 DGMGAKKFVQLAKDLQKKYGAQFKAP-KLLLDMAENGE---TFYQRFNPYKGETKK 736 Score = 89.4 bits (220), Expect = 5e-22 Identities = 55/185 (29%), Positives = 97/185 (52%), Gaps = 17/185 (9%) Query: 419 NAINGDMIREINQALDSLEEREDVRVIAITGQGRVFSAGADVTEFGSLTP---------- 468 N D ++E+N +D++ + ++ + IT FS GAD+T + Sbjct: 28 NVFTVDAMQELNAIIDAVIADDKIKGVVITSGKETFSGGADLTMLEGMFKEFQKQKVKDP 87 Query: 469 ---VKAMIAS-RKFHEVFMKIQFLTKPVIAVINGLALGGGMELALSADFRVASKT--AEM 522 V+ + + K +F K++ KP ++ ING +GG E++L+ RVAS +M Sbjct: 88 EGAVQTLFDNVGKMSGLFRKLETCGKPWVSAINGTCMGGAFEMSLACHARVASDAPGVKM 147 Query: 523 GQPEINLGLIPGGGGTQRLSRLSGRK-GLELVLTGRRVKAEEAYRLGIVEFLAEPEELES 581 PE+ +GL PG GGTQR+ RL+ ++ L+++ TG + A+ A +G+V +A ++L Sbjct: 148 ALPEVKVGLFPGAGGTQRVPRLANQQDALQMMTTGSSLTAQRAKAMGLVTEIAPAKKLVE 207 Query: 582 EVRKL 586 +KL Sbjct: 208 TAKKL 212 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 975 Number of extensions: 49 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 738 Length adjustment: 39 Effective length of query: 612 Effective length of database: 699 Effective search space: 427788 Effective search space used: 427788 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory