GapMind for catabolism of small carbon sources

 

Protein WP_014265489.1 in Granulicella mallensis MP5ACTX8

Annotation: NCBI__GCF_000178955.2:WP_014265489.1

Length: 1198 amino acids

Source: GCF_000178955.2 in NCBI

Candidate for 13 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-leucine catabolism liuB med methylcrotonoyl-CoA carboxylase (subunit 2/2) (EC 6.4.1.4) (characterized) 45% 72% 406.8 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-isoleucine catabolism pccA med Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized) 40% 93% 370.9 urea carboxylase (EC 6.3.4.6) 57% 1359.7
propionate catabolism pccA med Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized) 40% 93% 370.9 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-threonine catabolism pccA med Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized) 40% 93% 370.9 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-valine catabolism pccA med Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized) 40% 93% 370.9 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-isoleucine catabolism pccA1 med acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 40% 90% 346.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
propionate catabolism pccA1 med acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 40% 90% 346.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-threonine catabolism pccA1 med acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 40% 90% 346.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-valine catabolism pccA1 med acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 40% 90% 346.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-isoleucine catabolism pccA2 lo acyl CoA carboxylase biotin carboxyl carrier protein subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 39% 52% 49.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
propionate catabolism pccA2 lo acyl CoA carboxylase biotin carboxyl carrier protein subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 39% 52% 49.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-threonine catabolism pccA2 lo acyl CoA carboxylase biotin carboxyl carrier protein subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 39% 52% 49.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7
L-valine catabolism pccA2 lo acyl CoA carboxylase biotin carboxyl carrier protein subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized) 39% 52% 49.3 urea carboxylase (EC 6.3.4.6) 57% 1359.7

Sequence Analysis Tools

View WP_014265489.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MFRKVLIANRGAIACRIERTLHRLGVGSVAVYSTADKNSLHVLQADEAVLIGEAPAASSY
LSFDAIFAAAAQTGAEAIHPGYGFLSENIQFARECAARGITFIGPAPEHIEAFALKHTAR
ATAKTCGVPLLPGTGLLSSLEDALAQAELLKYPVMLKSSGGGGGIGMRVCHSAEQLGEAY
ESVLRLSRANFGDSGVYLEKFVSRARHIEVQIFGDGKGNVLALGERDCSAQRRHQKVLEE
TPAPGLTEATREQLRSAAILLAKAVNYASAGTVEFIYDDDTNEFYFLEVNTRLQVEHGVT
EEVTGIDLVEWMVRQASGDMPPLDSFTIKPAGASIEARVYAEDPAHNFQPTPGKLTLVKF
PDASLARVETWIESGTTITSFYDPMIAKIIVHGKDREEALQKLSAALSATAIDGTETNLR
YLREVIQTPEFVSGKITTSFLGTFAFARHAVEVLEGGTQTTIQDYPGRIGYWNIGVPPSG
PMDHLSFRIANRLVGNPESASAIEFATMGGRLKFYGDTCIALTGADMGAKLNGALIPLWT
AVEVKAGSVLSLGAASKEGTRTYLAVQGSFDTQPYLGSRSTFVLGGFGGHAGRGLRAGDV
LHIGQQDLALETAAVLPSALVPALTHTWTIGVLFGPHTAPEFFTEEDIEMLFSTQWKVHY
QSDRTGVRLVGPKPKWARPDGGEAGLHPSNIHDNAYAIGTIDFTGDMPILLGPDGPSLGG
FVCPATIVQAELWKLGQLKAGDLVQFYRVNLAQAEAMEKEQDKFLQNFGSPLAALPEAPT
LEPAILKRITDRAQSMTFRADGDKYLLVEYGELQLDLNLRFRVHILEQNLRAANIPGIID
ITPGIRSLHIHYDSRKLARQKLIDALDEIDRTMPELTDITVPSRIVHLPLSWDDPQAKLA
QQKYMQAVRPDAPWCPSNIEFIRRINGLDSIDDVYRIVHEASYLVLGLGDVYLGAPVATP
IDPRHRLVTTKYNPARTWTPENAVGIGGAYMCVYGMEGPGGYQLVGRTIQVWNTWKSTPA
FAEGIPWSLRFFDQIRFYPVSAEELLDARERFPHGGYELKVEETTFNLAEYQRFLDSISV
EAAAFKRHQKESFDAERERWRAAGLLTVVEPPEVPQETESATVAEGCEGVSSPLTASVFQ
IAVKPGQVVAEDEKLIVLDAMKTEIAISSPISGTVEEIHCELGAIVNGGQLLVSIRPS

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory