GapMind for catabolism of small carbon sources

 

Protein WP_013579721.1 in Granulicella tundricola MP5ACTX9

Annotation: NCBI__GCF_000178975.2:WP_013579721.1

Length: 448 amino acids

Source: GCF_000178975.2 in NCBI

Candidate for 34 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-histidine catabolism Ac3H11_2560 med ABC transporter for L-Histidine, ATPase component (characterized) 38% 93% 186.8 ABC transporter for nitrate, ATPase component 42% 179.1
L-histidine catabolism hutV med ABC transporter for L-Histidine, ATPase component (characterized) 41% 77% 147.5 ABC transporter for L-Histidine, ATPase component 38% 186.8
L-proline catabolism opuBA lo BusAA, component of Uptake system for glycine-betaine (high affinity) and proline (low affinity) (OpuAA-OpuABC) or BusAA-ABC of Lactococcus lactis). BusAA, the ATPase subunit, has a C-terminal tandem cystathionine β-synthase (CBS) domain which is the cytoplasmic K+ sensor for osmotic stress (osmotic strength)while the BusABC subunit has the membrane and receptor domains fused to each other (Biemans-Oldehinkel et al., 2006; Mahmood et al., 2006; Gul et al. 2012). An N-terminal amphipathic α-helix of OpuA is necessary for high activity but is not critical for biogenesis or the ionic regulation of transport (characterized) 41% 59% 164.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
L-proline catabolism proV lo glycine betaine/l-proline transport atp-binding protein prov (characterized) 37% 72% 159.5 ABC transporter for L-Histidine, ATPase component 38% 186.8
L-proline catabolism hutV lo HutV aka HISV aka R02702 aka SMC00670, component of Uptake system for hisitidine, proline, proline-betaine and glycine-betaine (characterized) 39% 80% 144.8 ABC transporter for L-Histidine, ATPase component 38% 186.8
xylitol catabolism Dshi_0546 lo ABC transporter for Xylitol, ATPase component (characterized) 37% 67% 140.6 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 38% 55% 136.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
trehalose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 38% 55% 136.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism malK lo ABC-type maltose transporter (subunit 3/3) (EC 7.5.2.1) (characterized) 31% 95% 135.2 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-mannitol catabolism mtlK lo SmoK aka POLK, component of Hexitol (glucitol; mannitol) porter (characterized) 40% 65% 132.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-sorbitol (glucitol) catabolism mtlK lo ABC transporter for D-Sorbitol, ATPase component (characterized) 38% 61% 132.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
N-acetyl-D-glucosamine catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 32% 91% 132.5 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-glucosamine (chitosamine) catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 32% 91% 132.5 ABC transporter for L-Histidine, ATPase component 38% 186.8
lactose catabolism lacK lo LacK, component of Lactose porter (characterized) 37% 56% 131.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism malK1 lo MalK; aka Sugar ABC transporter, ATP-binding protein, component of The maltose, maltotriose, mannotetraose (MalE1)/maltose, maltotriose, trehalose (MalE2) porter (Nanavati et al., 2005). For MalG1 (823aas) and MalG2 (833aas), the C-terminal transmembrane domain with 6 putative TMSs is preceded by a single N-terminal TMS and a large (600 residue) hydrophilic region showing sequence similarity to MLP1 and 2 (9.A.14; e-12 & e-7) as well as other proteins (characterized) 37% 56% 131 ABC transporter for L-Histidine, ATPase component 38% 186.8
sucrose catabolism thuK lo ABC transporter (characterized, see rationale) 38% 52% 130.6 ABC transporter for L-Histidine, ATPase component 38% 186.8
xylitol catabolism HSERO_RS17020 lo ABC-type sugar transport system, ATPase component protein (characterized, see rationale) 31% 80% 126.7 ABC transporter for L-Histidine, ATPase component 38% 186.8
L-arabinose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 32% 58% 126.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-fructose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 32% 58% 126.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
sucrose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 32% 58% 126.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-xylose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 32% 58% 126.3 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism malK_Sm lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 33% 57% 124.8 ABC transporter for L-Histidine, ATPase component 38% 186.8
trehalose catabolism malK lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 33% 57% 124.8 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism malK_Aa lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 34% 61% 123.6 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-mannose catabolism TT_C0211 lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 30% 73% 123.2 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-cellobiose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-glucose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
lactose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
D-maltose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
sucrose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
sucrose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
trehalose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8
trehalose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 30% 81% 122.9 ABC transporter for L-Histidine, ATPase component 38% 186.8

Sequence Analysis Tools

View WP_013579721.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MPEVLIRAERVEKYYAQPSENRIQVIAPTDLSIVKGEIVALLGPSGSGKSTLMRMLTGLS
APSAGQVFWHEKPIASTDVNVSIVFQSFALFPWLTVQENVEAVLKARGMNADERRKRSLK
MLDTVGLDGFQAAYPKELSGGMRQRVGFARALVVEPEVLFMDEPFSALDVLTAENLRSEL
LELWQNKTLPTQAIFIVTHNIEEAVLLADRIIVLGRNPGRVRTDFKVTLTHPRNRKAVAF
TQLVDYIYKVLTQPDAPTPQLPNAAGDRDARRTYQMLPHARPGGIAGLLEILIDHEGKDD
IYKLADDLAFEIDDLLPIVDAAQLLGFLTVNEGDAAITPTGTEFANSEILRQKELFRTAA
VDNVLLLRQIVRALETKSDGEVAEEFFHDVLDEQFSEEETLRQLETAISWGRYAELFDFD
AARHRFMQPERLHPAPEELATVDTESGE

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory