GapMind for catabolism of small carbon sources

 

Alignments for a candidate for deoK in Brucella inopinata BO1

Align Ribokinase (EC 2.7.1.15) (characterized)
to candidate WP_008509047.1 BIBO1_RS15020 ribokinase

Query= reanno::Koxy:BWI76_RS00290
         (309 letters)



>NCBI__GCF_000182725.1:WP_008509047.1
          Length = 313

 Score =  216 bits (550), Expect = 6e-61
 Identities = 122/302 (40%), Positives = 169/302 (55%), Gaps = 2/302 (0%)

Query: 6   KLVVLGSINADHILNLDAFPTPGETVTGHHYQVAFGGKGANQAVAAGRSGANISFIACTG 65
           K+ V GS+N D    + A P PG+TV    Y +  GGKGANQAVA  + G  I F+   G
Sbjct: 9   KIFVFGSVNVDVSARMAALPRPGQTVNASGYGIGLGGKGANQAVAVAKLGGAIRFVGAVG 68

Query: 66  DDDIGERVRRQLESDNIDVAPVRAVAGESTGVALIFVNAEGENTIGIHAGANAALCVAQV 125
            D  GE   +Q+    +D   VR +    TG+A+I V   G+NTI + AGANA    A +
Sbjct: 69  HDAFGELALKQMREFGLDTGSVRVIDDVDTGMAIIQVEETGQNTIAVCAGANARWSSADI 128

Query: 126 DAEKERIASAQALLMQLESPLESVLAAAKIAHQNQTSVILNPAPARELPD--ELLTLVDI 183
           DA    IA A+  L+Q E P E+ LA AK       +V+L+PAP  +     +L+ L DI
Sbjct: 129 DAYGADIAKARITLLQREVPHEANLAVAKAVRAAGGTVLLDPAPVGDASQMADLIALSDI 188

Query: 184 ITPNETEAEKLTGVRVENDEDAAKAAKVLHDKGIGTVIITLGSRGVWASSEGNGRRVPGF 243
           I+PNETEA ++TG+   +   A  A + L ++G   VI+ LGSRG    +    +    F
Sbjct: 189 ISPNETEAAEITGIEPTDLVSAEAAGRKLLERGPKIVILKLGSRGALLVTADEVKHFTPF 248

Query: 244 KVQAVDTIAAGDTFNGALVTALLEGRELAEAIRFAHAAAAIAVTRKGAQPSVPWRKEIDE 303
           KV+ VDT+AAGD+FNG    A  + R L + +R+  AA AIAVTR GA  + P   E++E
Sbjct: 249 KVKVVDTVAAGDSFNGGFAVAFSQARPLHDCVRYGSAAGAIAVTRVGAGAAAPTAHEVEE 308

Query: 304 FL 305
            +
Sbjct: 309 LI 310


Lambda     K      H
   0.315    0.131    0.366 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 268
Number of extensions: 15
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 309
Length of database: 313
Length adjustment: 27
Effective length of query: 282
Effective length of database: 286
Effective search space:    80652
Effective search space used:    80652
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.5 bits)
S2: 48 (23.1 bits)

Align candidate WP_008509047.1 BIBO1_RS15020 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.794602.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   4.1e-109  350.5   5.3   4.6e-109  350.3   5.3    1.0  1  NCBI__GCF_000182725.1:WP_008509047.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_000182725.1:WP_008509047.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  350.3   5.3  4.6e-109  4.6e-109       1     298 []      10     308 ..      10     308 .. 0.99

  Alignments for each domain:
  == domain 1  score: 350.3 bits;  conditional E-value: 4.6e-109
                             TIGR02152   1 ivvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkk 73 
                                           i+v+GS+nvD+ +r+ +lp+pG+tv+a+ + i+ GGKGANQAva+a+lg +++++g+vG+D+fge +l+++++
  NCBI__GCF_000182725.1:WP_008509047.1  10 IFVFGSVNVDVSARMAALPRPGQTVNASGYGIGLGGKGANQAVAVAKLGGAIRFVGAVGHDAFGELALKQMRE 82 
                                           89*********************************************************************** PP

                             TIGR02152  74 egidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveea 146
                                            g+dt +v+ +++++tG+A+i+v+e+g+N+I v+aGan++++++d++a+ ++i++++++llQ E+p+e++ ++
  NCBI__GCF_000182725.1:WP_008509047.1  83 FGLDTGSVRVIDDVDTGMAIIQVEETGQNTIAVCAGANARWSSADIDAYGADIAKARITLLQREVPHEANLAV 155
                                           ************************************************************************* PP

                             TIGR02152 147 lkiakkagvkvllnPAPaekkld.eellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviit 218
                                           +k++++ag +vll+PAP  ++++ ++l++l+dii+pNetEa+++tgie +dl +ae+a +klle+g k vi++
  NCBI__GCF_000182725.1:WP_008509047.1 156 AKAVRAAGGTVLLDPAPVGDASQmADLIALSDIISPNETEAAEITGIEPTDLVSAEAAGRKLLERGPKIVILK 228
                                           *****************987766599*********************************************** PP

                             TIGR02152 219 lGskGallvskdekklipalkvkavDttaAGDtFigalavaLaegksledavrfanaaaalsVtrkGaqssiP 291
                                           lGs+Gallv++de k+++++kvk+vDt+aAGD+F+g++ava+++ + l+d+vr+++aa a++Vtr+Ga ++ P
  NCBI__GCF_000182725.1:WP_008509047.1 229 LGSRGALLVTADEVKHFTPFKVKVVDTVAAGDSFNGGFAVAFSQARPLHDCVRYGSAAGAIAVTRVGAGAAAP 301
                                           ************************************************************************* PP

                             TIGR02152 292 tkeevee 298
                                           t++evee
  NCBI__GCF_000182725.1:WP_008509047.1 302 TAHEVEE 308
                                           *****85 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (313 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.01u 0.01s 00:00:00.02 Elapsed: 00:00:00.00
# Mc/sec: 12.29
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory