GapMind for catabolism of small carbon sources

 

Alignments for a candidate for amaA in Ruegeria conchae TW15

Align pipecolate oxidase (EC 1.5.3.7) (characterized)
to candidate WP_010441035.1 G7G_RS0110025 FAD-binding oxidoreductase

Query= metacyc::G1G01-5614-MONOMER
         (432 letters)



>NCBI__GCF_000192475.1:WP_010441035.1
          Length = 423

 Score =  302 bits (774), Expect = 1e-86
 Identities = 162/413 (39%), Positives = 230/413 (55%), Gaps = 1/413 (0%)

Query: 11  QCLWEHVSKPTVAAQALAGEHKADVCVIGGGITGLSAAIHLLEQGKSVIVLEAWKIGHGG 70
           Q LW      ++  Q L+G+   D+ VIGGG TG SAA+   + G SV +LEA +IGHGG
Sbjct: 6   QSLWRQTCGESIKTQKLSGDVTVDIAVIGGGYTGCSAALTAAKAGASVCLLEAHEIGHGG 65

Query: 71  SGRNVGLVNAGTWIRPDDVEATLGQKQGSRLNKVLGEAPAEVFAMIERLGIDCQAQHKGT 130
           SGRNVGLVNAG W+ PD + + LGQ  G+RL  +L  AP+EVF +I+   I C+    GT
Sbjct: 66  SGRNVGLVNAGLWLPPDQIRSHLGQVPGNRLIDLLANAPSEVFGLIDAHEIACEPVRHGT 125

Query: 131 LHMAHNATGIADLEARHEQWRRRGADVELLTGAQCQEYCGTDKISAALLDRRAGTINPMG 190
           LH AH+A G  DL  RH Q    GA VELL     ++  G+  +  AL D RAGTI P+ 
Sbjct: 126 LHCAHSAKGFEDLHTRHSQLSVSGAPVELLDANTSRKRTGSPAVHGALFDPRAGTIQPLA 185

Query: 191 YTQGLAAAVTRLGGKIFQQSSVEGLEREGDGWRVKTARGAVRAEKVVISTGAYTEGDWSN 250
           +  GLA A    G  I+  S ++ L +E   W +    G VRA+ ++ +T AY +G  ++
Sbjct: 186 FVVGLARAAQDAGALIYTDSPIQSLRQEAGMWVLHGENGTVRAKSIIQATNAYHQG-IAD 244

Query: 251 LQKQFFRGYYYQVASKPLQGIAADKVLPHGQGSWDTRTVLSSIRRDDQGRLLLGSLGRVD 310
               +   YY+Q A+ PL       +LP G+G WDT  +++S R D +GR ++G +G ++
Sbjct: 245 TAPAYVPVYYFQYATAPLSHNLRASILPEGEGCWDTGLIMTSFRLDQEGRFIIGGMGDLN 304

Query: 311 NKPAWFVRSWADRIQSHYYPELGKVEWEMHWTGCIDFTPDHLMRLFEPAPGLVAVTGYNG 370
           +   +  ++W  R     YP+L        W G I  T DH+ ++ +  P  +A  G++G
Sbjct: 305 SVGGFAHKAWVSRKLVVLYPQLADQPLVEGWHGRIAMTSDHIPKIIQIGPNALAAHGFSG 364

Query: 371 RGNTTGTVIGRAFAEFLLKGEADSLPIPFSPMSGVSAPSLRTAFYESGFSLYH 423
           RG   GTV GR  AE LL  +   LP+P       S   LR AF+E+G +L H
Sbjct: 365 RGIGPGTVFGRLMAESLLNDDPSLLPVPPITEYCESWTGLRRAFFETGAALTH 417


Lambda     K      H
   0.319    0.135    0.419 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 519
Number of extensions: 26
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 432
Length of database: 423
Length adjustment: 32
Effective length of query: 400
Effective length of database: 391
Effective search space:   156400
Effective search space used:   156400
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory