Align N-acetylglucosamine-specific PTS system, I, HPr, and IIA components (nagF) (characterized)
to candidate WP_008539428.1 HMPREF9454_RS09390 phosphoenolpyruvate--protein phosphotransferase
Query= reanno::pseudo5_N2C3_1:AO356_17540 (837 letters) >NCBI__GCF_000245775.1:WP_008539428.1 Length = 568 Score = 332 bits (850), Expect = 5e-95 Identities = 184/554 (33%), Positives = 310/554 (55%), Gaps = 13/554 (2%) Query: 286 GLVTGPLVRLSGIQLPEDIGGH-------AIEEQRQRLSDALAQVRGEIHLTLEHARARQ 338 G++TG + ++L ED+ + EE+ ++ +ALA + ++ R + Sbjct: 9 GVITGISIA-KVMKLGEDLQSYIDAYTPGTAEEEVSKIKEALAYAAEVLQTNIKTLRDKG 67 Query: 339 HRDEEAIFSAHLALLEDPVLLDAADLFIEQGSAAPHAWSRSIDTQCQVLQQLGSTLLAER 398 ++ I AH +++DP+L + A L + +AP A + + + +Q+ T ER Sbjct: 68 MLEQAGIMEAHRMMVQDPMLEENAMLKLGACGSAPKAVLEASEENASIFEQMDDTYFRER 127 Query: 399 ANDLRDLRQRVLRVLLGEAWQFDVAAGAIVAAQELTPSDLLQLSAQGVAGVCMVEGGATS 458 A D+RD+ +RV R +LG + I+ +E+ PS + + + +AGV + G T Sbjct: 128 AVDIRDVGKRVTRRILGLKEKTVDGGAVILCGEEIEPSVIANIPTEKIAGVILGNGSTTC 187 Query: 459 HVAILARGKGLPCLVALGDELLAQEQGQAVVLDADGGRLELTPTVERLAQVRQAQTRRTA 518 H I+A+ + +P + LGD++ V+L+ + G + + PT + +A + + Sbjct: 188 HAVIIAKARAIPTVAGLGDKIKDIPDNAEVILNGETGEIFVEPTEDLIASYQVKLEEQRR 247 Query: 519 LRAQQQSLAHTPARTVDGVEVEVAANVASSAEAGESLANGADGVGLLRTEFLFVDRHTAP 578 L+ L+ P T DGVEV++ AN+++ + ++ GA GVGL R+EFLF+ R T P Sbjct: 248 LKEHYAQLSKLPTVTKDGVEVDLMANISTHLDVEAAMKFGAKGVGLFRSEFLFMGRDTIP 307 Query: 579 DEEEQRQAYQAVLEAMGDKPVIIRTIDVGGDKQLDYLPLPSEANPVLGLRGIRLAQVRPD 638 DEE Q +AY+ +E +IRT+D+GGDK L YL +P E NP LG R IR+ R + Sbjct: 308 DEETQFKAYKEAIEKCNGHLCVIRTMDIGGDKPLPYLNIPEEENPFLGYRAIRICLNRRE 367 Query: 639 LLDQQLRALLQTRPLDRCRILLPMVTEVDELLHIRKRLDALGSELGLSERP-----QLGV 693 + Q++A+L+ + ++LPMV V+E+ +R ++ S+L E+P QLG+ Sbjct: 368 VFMPQVKAILRAGLYGKAAMMLPMVINVEEVKQVRAIIEEAKSQLAHEEKPFSNNVQLGI 427 Query: 694 MVEVPAAALLAEQLAEHADFLSIGTNDLSQYTLAMDRDHAGLAARVDALHPALLRLIAQT 753 MVE PAAA++ LA++ DF SIGTNDL QYTLA+DR + ++ + +PA+LRLI T Sbjct: 428 MVETPAAAVMTPVLAKYLDFFSIGTNDLVQYTLAVDRVNTNVSYLYNHFNPAVLRLIKLT 487 Query: 754 CAGAAKHGRWVGVCGALASDPLATPVLIGLGVRELSVSPPQIGEIKDRVRHLDAAQCARL 813 A + WVG+CG +ASDP A +L+ +G+ ELS+S P I +K+++R + +AQ Sbjct: 488 IESARNNNIWVGMCGEMASDPNAAAILMAMGINELSMSAPSIPRVKEKIRSITSAQAKAA 547 Query: 814 SNELLNLGSALAVR 827 + ++ + A++ Sbjct: 548 LDTVMTMEDGNAIK 561 Lambda K H 0.319 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 781 Number of extensions: 36 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 837 Length of database: 568 Length adjustment: 39 Effective length of query: 798 Effective length of database: 529 Effective search space: 422142 Effective search space used: 422142 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory