Align The fructose porter, FruA (fructose-1-P forming IIABC) (Delobbe et al. 1975) FruA is 39% identical to 4.A.2.1.1). fructose can be metabolized to Fru-1-P via this system as well as Fru-6-P by another PTS system (characterized)
to candidate WP_008538691.1 HMPREF9454_RS06610 PTS transporter subunit EIIC
Query= TCDB::P71012 (635 letters) >NCBI__GCF_000245775.1:WP_008538691.1 Length = 458 Score = 411 bits (1056), Expect = e-119 Identities = 214/466 (45%), Positives = 320/466 (68%), Gaps = 21/466 (4%) Query: 171 KILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQEIEDAPAIIV 230 KI+ +TACPTGIAHT+MAA+AL + A+E+G EIK+ET G +++ L+ +I+ A +I+ Sbjct: 2 KIVGITACPTGIAHTYMAAEALTKAAQEMGHEIKIETQGVE-VENILSDNDIQSADIVII 60 Query: 231 AADKQVEMERFKGKRVLQVPVTAGIRRPQELIEKAMN-QDAPIYQGSGGGSAASNDDEEA 289 A K V++ RF+GKRV ++P+ ++ PQ++I+ A++ ++ I++ + +D+ Sbjct: 61 ACQKTVDLSRFEGKRVTEIPIERAVKNPQKVIQDAIDGKNISIFE-------LAKEDKAK 113 Query: 290 KGKSGSGIGNTFYKHLMSGVSNMLPFVVGGGILVAISFFWGIHSADPNDPSYNTFAAALN 349 K +GI YKHLMSGV+ MLPFV+ GGIL+A SF +GI ++DPNDPS+N A AL+ Sbjct: 114 KKAQQTGI----YKHLMSGVNFMLPFVISGGILIAFSFMFGIKASDPNDPSFNVIAKALS 169 Query: 350 FIGGDNALKLIVAVLAGFIAMSIADRPGFAPGMVGGFMATQANAGFLGGLIAGFLAGYVV 409 IGG A ++V +LA IA SIA + G GMV G +A AGFLGGLI AGY+ Sbjct: 170 DIGGGAAFGMMVPMLAAGIAYSIAGKQGMCSGMVAGVIAKSIGAGFLGGLIGAIFAGYLT 229 Query: 410 -ILLKKVFTFIPQSLDGLKPVLIYPLFGIFITGVLMQFVVNTPVAAFMNFLTNWLESLGT 468 L++K+ +P+++ LK +++ PL +FITG+ M F+V PV ++ LTN+L S+ + Sbjct: 230 KTLMEKIH--LPKAIQTLKGLILVPLISVFITGMFMIFIVGEPVKFLLDGLTNYLNSMDS 287 Query: 469 GNLVLMGIILGGMMAIDMGGPLNKAAFTFGIAMIDAGNYAPHAAIMAGGMVPPLGIALAT 528 N V+ G+I+G MMA DMGGP+NKA TF IA++ G YAP AA M GM PPLG+ALAT Sbjct: 288 SNGVIFGLIIGAMMASDMGGPINKAISTFSIALMSTGVYAPIAACMVAGMTPPLGLALAT 347 Query: 529 TIFRNKFTQRDREAGITCYFMGAAFVTEGAIPFAAADPLRVIPAAVVGAAVAGGLTEFFR 588 +F+ +FT+ +REAG +C+ +G +++TEGAIPFA ADP+RVIPA ++G+AVAG ++ Sbjct: 348 VLFKKRFTKEEREAGKSCWVLGLSYITEGAIPFAVADPIRVIPALMLGSAVAGAISLGAG 407 Query: 589 VTLPAPHGGVFVA----FITNHPMLYLLSIVIGAVVMAIILGIVKK 630 APHGG+++ ITN PM Y+L++V G++V + + ++K+ Sbjct: 408 CASLAPHGGIWILPIPNVITNLPM-YVLALVAGSIVTCLSVALLKR 452 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 699 Number of extensions: 29 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 635 Length of database: 458 Length adjustment: 35 Effective length of query: 600 Effective length of database: 423 Effective search space: 253800 Effective search space used: 253800 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory