Align trehalase (TreF;b3519) (EC 3.2.1.28) (characterized)
to candidate WP_032984355.1 BN137_RS11100 alpha,alpha-trehalase TreF
Query= CAZy::AAC76544.1 (549 letters) >NCBI__GCF_000319285.1:WP_032984355.1 Length = 546 Score = 845 bits (2183), Expect = 0.0 Identities = 405/550 (73%), Positives = 459/550 (83%), Gaps = 5/550 (0%) Query: 1 MLNQKIQNPNPDELMIEVDLCYELDPYELKL-DEMIEAEPEPEMIEGLPASDALTPADRY 59 M Q + P +EL +V +DP +L + + EP+PE IEG+P+ DALTPADRY Sbjct: 1 MFQQTTRLPFTEELAEKV----RMDPESGELIPDARDVEPQPESIEGMPSPDALTPADRY 56 Query: 60 LELFEHVQSAKIFPDSKTFPDCAPKMDPLDILIRYRKVRRHRDFDLRKFVENHFWLPEVY 119 LELFEHVQ+++IF DSKTFPDCAPK PL IL+ YR+ +R FDLR+FVE HF+ P + Sbjct: 57 LELFEHVQASRIFADSKTFPDCAPKTSPLTILMNYRQAKRLPGFDLRRFVEEHFYFPVIN 116 Query: 120 SSEYVSDPQNSLKEHIDQLWPVLTREPQDHIPWSSLLALPQSYIVPGGRFSETYYWDSYF 179 ++ YVSDP +L EHID LWP+LTR+P +H+ SSLL LPQ+YIVPGGRF+ETYYWDSYF Sbjct: 117 TNPYVSDPNRTLTEHIDNLWPILTRQPHEHLENSSLLPLPQAYIVPGGRFTETYYWDSYF 176 Query: 180 TMLGLAESGREDLLKCMADNFAWMIENYGHIPNGNRTYYLSRSQPPVFALMVELFEEDGV 239 TMLGLAESGR DLL+CMADNFAWMIENYGHIPNGNRTYYLSRSQPPVFALMVELFEEDGV Sbjct: 177 TMLGLAESGRNDLLRCMADNFAWMIENYGHIPNGNRTYYLSRSQPPVFALMVELFEEDGV 236 Query: 240 RGARRYLDHLKMEYAFWMDGAESLIPNQAYRHVVRMPDGSLLNRYWDDRDTPRDESWLED 299 RGARRYLDHL MEYAFWMDGAE+L P QA+RHVV+MPDG LLNRYWDDRDTPRDESW ED Sbjct: 237 RGARRYLDHLMMEYAFWMDGAENLEPGQAWRHVVKMPDGVLLNRYWDDRDTPRDESWRED 296 Query: 300 VETAKHSGRPPNEVYRDLRAGAASGWDYSSRWLRDTGRLASIRTTQFIPIDLNAFLFKLE 359 VETAK SGRP NEVYRDLRAGAASGWDYSSRWLRD RLASIRTT F+P+DLNAFL+KLE Sbjct: 297 VETAKLSGRPANEVYRDLRAGAASGWDYSSRWLRDPDRLASIRTTHFLPVDLNAFLYKLE 356 Query: 360 SAIANISALKGEKETEALFRQKASARRDAVNRYLWDDENGIYRDYDWRREQLALFSAAAI 419 +AIANI+ LKG T +FR+KA RR+A NRYLWDDE G YRDYDWRR +LA FSAA + Sbjct: 357 TAIANIAQLKGIPATATVFRKKAIDRREACNRYLWDDEMGSYRDYDWRRGRLASFSAACV 416 Query: 420 VPLYVGMANHEQADRLANAVRSRLLTPGGILASEYETGEQWDKPNGWAPLQWMAIQGFKM 479 VPLYVG+A++ QADR++ VR RLL+PGGIL ++ ET +QWDKPNGWAPLQWMAIQGFK Sbjct: 417 VPLYVGLASYAQADRISVNVRERLLSPGGILTTDVETEQQWDKPNGWAPLQWMAIQGFKN 476 Query: 480 YGDDLLGDEIARSWLKTVNQFYLEQHKLIEKYHIADGVPREGGGGEYPLQDGFGWTNGVV 539 YGDD L D IA +WL+TV +FY E HKLIEKYHIAD PR GGGGEYPLQDGFGWTNGV Sbjct: 477 YGDDPLADIIANNWLRTVKRFYNENHKLIEKYHIADYSPRPGGGGEYPLQDGFGWTNGVT 536 Query: 540 RRLIGLYGEP 549 RRLI LYGEP Sbjct: 537 RRLIALYGEP 546 Lambda K H 0.319 0.138 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1232 Number of extensions: 54 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 546 Length adjustment: 36 Effective length of query: 513 Effective length of database: 510 Effective search space: 261630 Effective search space used: 261630 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory