Align The high affinity sugar:H+ symporter (sugar uptake) porter of 514 aas and 12 TMSs, STP10. It transports glucose, galactose and mannose, and is therefore a hexose transporter (Rottmann et al. 2016). The 2.4 (characterized)
to candidate WP_015332704.1 FAES_RS18215 sugar porter family MFS transporter
Query= TCDB::Q9LT15 (514 letters) >NCBI__GCF_000331105.1:WP_015332704.1 Length = 475 Score = 214 bits (545), Expect = 6e-60 Identities = 149/483 (30%), Positives = 241/483 (49%), Gaps = 50/483 (10%) Query: 24 FVIMTCIVAAMGGLLFGYDLGISGGVTSMEEFLTKFFPQVESQMKKAKHDTAYCKFDNQM 83 ++ + C+VAA+GG LFG+D + G + + T F D Sbjct: 16 YLYLVCLVAALGGFLFGFDTAVISGTVGLVK--TDF------------------GLDAIQ 55 Query: 84 LQLFTSSLYLAALVASFMASVITRKHGRKVSMFIGGLAFLIGALFNAFAVNVSMLIIGRL 143 F S L +V ++ ++ +GRK+ + + FL A+ F+ + LI RL Sbjct: 56 EGWFVSCALLGCIVGVSVSGKLSDTYGRKLVQILSAVLFLASAIGCTFSTTFATLIAFRL 115 Query: 144 LLGVGVGFANQSTPVYLSEMAPAKIRGALNIGFQMAITIGILVANLIN---------YGT 194 + G+G+G A+ +P+Y+SE AP + RG + +Q+A+TIGI++A N + Sbjct: 116 VGGLGIGVASMVSPLYISEFAPPRYRGMMVSLYQLALTIGIVIAYFTNAYLASHTDDFAA 175 Query: 195 SK-----MAQHGWRVSLGLAAVPAVVMVIGSFILPDTPNSMLERGKNEEAKQMLKKIRGA 249 S+ ++ WR LGL AVPA + ++ ++P++P +L GK ++A+ +L +I G Sbjct: 176 SEGLSPILSTQVWRGMLGLGAVPAAIFLLALLVVPESPRWLLLHGKEQQARAILTRIDGP 235 Query: 250 DNVDHEFQDLIDAVEAA-KKVENPWKNIMESKYRPALIFCSAIPFFQQITGINVIMFYAP 308 + E IDA AA K + ++ YR AL +PF Q+ GIN +++Y P Sbjct: 236 VSAQKE----IDAFTAAGDKRQGDLSDLFTPTYRRALWIGLLLPFLSQVCGINAVIYYGP 291 Query: 309 VLFKTLGFGDDAALMSAVITGVVNMLSTFVSIYAVDRYGRRLLFLEGGIQMFICQLLVGS 368 + + GF + AL V G+VN+ TFV+I+ VDR+GR+ L L G+ + LL+ Sbjct: 292 RILEQAGFTLNNALGGQVTIGLVNVAFTFVAIFTVDRWGRKPL-LYVGVGGAVLSLLI-- 348 Query: 369 FIGARFGTSGTGTLTPATADWILAFICVYVAGFAWSWGPLGWLVPSEICPLEIRPAGQAI 428 IGA F + ++ WIL FI ++A FA+S+GP+ W+V EI P IR A+ Sbjct: 349 -IGALF------QMGVSSGPWILLFILAFIACFAFSFGPVCWVVVGEIFPNAIRGKAMAL 401 Query: 429 NVSVNMFFTFLIGQFFLTMLCHM-KFGLFYFFASMVAIMTVFIYFLLPETKGVPIEEMGR 487 FL+GQ +L + F+ FA + + L+PETKG +E + Sbjct: 402 ATLSLWIGNFLVGQLTPFLLEEVGSAWTFWLFAVCCSPALWLTWKLIPETKGRSLEAIEA 461 Query: 488 VWK 490 WK Sbjct: 462 YWK 464 Lambda K H 0.327 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 626 Number of extensions: 40 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 514 Length of database: 475 Length adjustment: 34 Effective length of query: 480 Effective length of database: 441 Effective search space: 211680 Effective search space used: 211680 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory