GapMind for catabolism of small carbon sources

 

Protein WP_018371762.1 in Streptococcus massiliensis 4401825

Annotation: NCBI__GCF_000341525.1:WP_018371762.1

Length: 247 amino acids

Source: GCF_000341525.1 in NCBI

Candidate for 51 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-arginine catabolism artP med Arginine transport ATP-binding protein ArtM (characterized) 52% 98% 240 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism BPHYT_RS24015 med ABC transporter related (characterized, see rationale) 45% 96% 221.9 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-lysine catabolism hisP med ABC transporter for L-Lysine, ATPase component (characterized) 47% 99% 220.7 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism hisP med Histidine transport ATP-binding protein HisP (characterized) 47% 95% 220.3 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism glnQ med Glutamine ABC transporter ATP-binding protein, component of Glutamine transporter, GlnQP. Takes up glutamine, asparagine and glutamate which compete for each other for binding both substrate and the transmembrane protein constituent of the system (Fulyani et al. 2015). Tandem substrate binding domains (SBDs) differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. Analysis revealed the roles of individual residues in determining the substrate affinity (characterized) 47% 96% 217.6 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-glutamate catabolism gltL med Glutamine ABC transporter ATP-binding protein, component of Glutamine transporter, GlnQP. Takes up glutamine, asparagine and glutamate which compete for each other for binding both substrate and the transmembrane protein constituent of the system (Fulyani et al. 2015). Tandem substrate binding domains (SBDs) differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. Analysis revealed the roles of individual residues in determining the substrate affinity (characterized) 47% 96% 217.6 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-glucosamine (chitosamine) catabolism AO353_21725 med ABC transporter for D-glucosamine, ATPase component (characterized) 46% 94% 217.2 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-citrulline catabolism AO353_03040 med ABC transporter for L-Arginine and L-Citrulline, ATPase component (characterized) 45% 97% 216.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-citrulline catabolism PS417_17605 med ATP-binding cassette domain-containing protein; SubName: Full=Amino acid transporter; SubName: Full=Histidine ABC transporter ATP-binding protein; SubName: Full=Histidine transport system ATP-binding protein (characterized, see rationale) 45% 89% 206.5 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-alanine catabolism Pf6N2E2_5405 med ABC transporter for D-Alanine, ATPase component (characterized) 43% 94% 199.5 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism aapP med ABC transporter for L-Glutamine, L-Histidine, and other L-amino acids, ATPase component (characterized) 43% 92% 198.7 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism bztD med BztD, component of Glutamate/glutamine/aspartate/asparagine porter (characterized) 43% 90% 198.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-aspartate catabolism bztD med BztD, component of Glutamate/glutamine/aspartate/asparagine porter (characterized) 43% 90% 198.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism bgtA med ATPase (characterized, see rationale) 42% 92% 196.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-aspartate catabolism bgtA med ATPase (characterized, see rationale) 42% 92% 196.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism bgtA med BgtA aka SLR1735, component of Arginine/lysine/histidine/glutamine porter (characterized) 43% 97% 194.9 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism aapP med AapP, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized) 41% 92% 194.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-aspartate catabolism aapP med AapP, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized) 41% 92% 194.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-glutamate catabolism aapP med AapP, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized) 41% 92% 194.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-leucine catabolism aapP med AapP, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized) 41% 92% 194.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-proline catabolism aapP med AapP, component of General L-amino acid porter; transports basic and acidic amino acids preferentially, but also transports aliphatic amino acids (catalyzes both uptake and efflux) (characterized) 41% 92% 194.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism aatP med Glutamate/aspartate transport ATP-binding protein GltL aka B0652, component of Glutamate/aspartate porter (characterized) 42% 99% 191.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-aspartate catabolism aatP med Glutamate/aspartate transport ATP-binding protein GltL aka B0652, component of Glutamate/aspartate porter (characterized) 42% 99% 191.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism hutV med ABC transporter for L-Histidine, ATPase component (characterized) 40% 80% 159.1 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-asparagine catabolism peb1C lo PEB1C, component of Uptake system for glutamate and aspartate (characterized) 40% 98% 183 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-aspartate catabolism peb1C lo PEB1C, component of Uptake system for glutamate and aspartate (characterized) 40% 98% 183 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-proline catabolism opuBA lo BusAA, component of Uptake system for glycine-betaine (high affinity) and proline (low affinity) (OpuAA-OpuABC) or BusAA-ABC of Lactococcus lactis). BusAA, the ATPase subunit, has a C-terminal tandem cystathionine β-synthase (CBS) domain which is the cytoplasmic K+ sensor for osmotic stress (osmotic strength)while the BusABC subunit has the membrane and receptor domains fused to each other (Biemans-Oldehinkel et al., 2006; Mahmood et al., 2006; Gul et al. 2012). An N-terminal amphipathic α-helix of OpuA is necessary for high activity but is not critical for biogenesis or the ionic regulation of transport (characterized) 43% 56% 177.9 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism PA5503 lo Methionine import ATP-binding protein MetN 2, component of L-Histidine uptake porter, MetIQN (characterized) 40% 72% 176.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-proline catabolism proV lo Glycine betaine/proline betaine transport system ATP-binding protein ProV (characterized) 40% 61% 175.6 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-cellobiose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-galactose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-glucose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
lactose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-maltose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-mannose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
sucrose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
trehalose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 41% 65% 156.4 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-proline catabolism HSERO_RS00895 lo ABC-type branched-chain amino acid transport system, ATPase component protein (characterized, see rationale) 32% 94% 125.6 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-isoleucine catabolism livG lo ABC transporter ATP-binding protein (characterized, see rationale) 30% 95% 119.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-leucine catabolism livG lo ABC transporter ATP-binding protein (characterized, see rationale) 30% 95% 119.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-phenylalanine catabolism livG lo ABC transporter ATP-binding protein (characterized, see rationale) 30% 95% 119.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-serine catabolism Ac3H11_1693 lo ABC transporter ATP-binding protein (characterized, see rationale) 30% 95% 119.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-tyrosine catabolism Ac3H11_1693 lo ABC transporter ATP-binding protein (characterized, see rationale) 30% 95% 119.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
citrate catabolism fecE lo iron(III) dicitrate transport ATP-binding protein FecE (characterized) 31% 87% 110.9 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-histidine catabolism natE lo NatE aka LivF aka SLR1881, component of Leucine/proline/alanine/serine/glycine (and possibly histidine) porter, NatABCDE (characterized) 32% 87% 104.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-leucine catabolism natE lo NatE aka LivF aka SLR1881, component of Leucine/proline/alanine/serine/glycine (and possibly histidine) porter, NatABCDE (characterized) 32% 87% 104.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
L-proline catabolism natE lo NatE aka LivF aka SLR1881, component of Leucine/proline/alanine/serine/glycine (and possibly histidine) porter, NatABCDE (characterized) 32% 87% 104.8 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-fructose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 30% 87% 101.3 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-mannose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 30% 87% 101.3 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
D-ribose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 30% 87% 101.3 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3
sucrose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 30% 87% 101.3 L-cystine import ATP-binding protein TcyN; EC 7.4.2.- 52% 257.3

Sequence Analysis Tools

View WP_018371762.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MIIISHLSKSFSGQKVLDDLSLTIEKGEVIALIGSSGAGKSTFLRSLNYLEKPDSGSIEI
DDFKVDFATISKEEILTLRRKLSMVFQQFNLFGRKTALDNVKEGLLVVKKLSKEEATKIA
KEELAKVGLSDRENHYPRHLSGGQKQRVALARALAMKPDVLLLDEPTSALDPELVGEVQK
SIADAAKSGQTMVLVSHDMSFVAQVADKVLFLDKGHIIESGTPDDIINHPKEERTKEFFA
NYKRTFA

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory